WLAN Toolbox™
Reference

[
i R
V/
N
y.

MATLAB

R2018b -) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

WLAN Toolbox™ Reference
© COPYRIGHT 2015-2018 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

Revision History

October 2015 Online only New for Version 1.0 (R2015b)

March 2016 Online only Revised for Version 1.1 (Release 2016a)
September 2016 Online only Revised for Version 1.2 (Release 2016b)
March 2017 Online only Revised for Version 1.3 (Release 2017a)
September 2017 Online only Revised for Version 1.4 (Release 2017b)
March 2018 Online only Revised for Version 1.5 (Release 2018a)
September 2018 Online only Revised for Version 2.0 (Release 2018b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Functions — Alphabetical List

1]

Classes — Alphabetical List

2|

Classes — Alphabetical List

3|

iii

Functions — Alphabetical List

1 Functions — Alphabetical List

1-2

getPSDULength

Return HE format PSDU length

Syntax

psduLength = getPSDULength(cfgHE)

Description

psduLength = getPSDULength(cfgHE) returns the PSDU length for the HE format
configuration object.

Examples

Get PSDU Length for HE Configuration Objects

Get the PSDU length of single user and multiuser HE configuration objects.
Get Single User PSDU Length

Create a single user HE configuration object. Get and display the PSDU length for the
configured object.

hesu = wlanHESUConfig;
psduLength = getPSDULength(hesu)

psduLength = 100

Get Multiuser PSDU Lengths

Create a multiuser HE configuration object with the allocation index set to 5, which
configures the object with seven users. Get and displaythe PSDU lengths for the
configured object.

getPSDULength

hemu = wlanHEMUConfig(5);
psduLength = getPSDULength (hemu)

psduLength = 1Ix7

100 100 202 100 100 100 202

Input Arguments

cfgHE — HE format configuration object
wlanHESUConfig object | wlanHEMUConfig object

HE format configuration object, specified as a wlanHEMUConfig or wlanHESUConfig
object.

Output Arguments

psduLength — PSDU length
positive integer | row vector

PSDU length for the HE format configuration object in bytes, returned as an integer or 1-
by-NumUsers vector. NumUsers is an integer in the range [1,74]. For more information
about NumUsers, see ruInfo.

See Also

Functions
rulnfo | wlanHEMUConfig | wlanHESUConfig | wlanWaveformGenerator

Introduced in R2018b

1-3

1 Functions — Alphabetical List

1-4

rulnfo

Return HE format resource unit allocation information

Syntax

info = rulnfo(cfgHE)

Description

info = rulnfo(cfgHE) returns resource unit (RU) allocation information for the high
efficiency (HE) format configuration object.

Examples

Get RU Allocation Information for HE Configuration Objects

Use the ruInfo function to get the resource unit information of single user and multi-
user HE configuration objects.

Get Single User RU Allocation Information

Create a single user HE configuration object. Get and display the RU allocation
information for the configured object.

hesu = wlanHESUConfig;
ru = rulnfo(hesu)

struct with fields:
NumUsers:
NumRUs:
RUIndices:
RUSizes:
NumUsersPerRU:
NumSpaceTimeStreamsPerRU:
PowerBoostFactorPerRU:

ru

H R RENR R
N
N

rulnfo

RUNumbers:

1

Get Multiuser RU Allocation Information

Create a multiuser HE configuration object with the allocation index set to 5, which
configures the object with seven users. Get and display the RU allocation information for

the configured object.

hemu = wlanHEMUConfig(5);
ru = rulnfo(hemu)

ru = struct with fields:

NumUsers:

NumRUs :

RUIndices:

RUSizes:

NumUsersPerRU:
NumSpaceTimeStreamsPerRU:
PowerBoostFactorPerRU:
RUNumbers:

7

7

[122567 4]

[26 26 52 26 26 26 52]
[1111111]

[1111111]
[1111111]
[123456 7]

Inactivate RU for Second User in Multiuser HE

Create a two user HE configuration object. Make the RU for the second user inactive by
setting the station identity to 2046.

Create a multiuser HE configuration object with the allocation index set to 96, which
configures an object for two users. The resource information shows that RUs are active

for two users.

hemu = wlanHEMUConfig(96);
ruInfo(hemu)
ans = struct with fields:
NumUsers: 2
NumRUs: 2
RUIndices: [1 2]
RUSizes: [106 106]
NumUsersPerRU: [1 1]
NumSpaceTimeStreamsPerRU: [1 1]
PowerBoostFactorPerRU: [1 1]

1-5

1 Functions — Alphabetical List

RUNumbers: [1 2]

Set the station identity to 2046 for the second user. The RU allocation information now
shows that RUs are active only for RU index 1.

hemu.User{2}.STAID = 2046;
ruInfo(hemu)

ans = struct with fields:
NumUsers:
NumRUs :
RUIndices:
RUSizes:
NumUsersPerRU:
NumSpaceTimeStreamsPerRU:
PowerBoostFactorPerRU:
RUNumbers:

R =N = N
o)
o

Input Arguments

cfgHE — HE configuration object
wlanHESUConfig object | wlanHEMUConfig object

HE configuration object, specified as a wlanHEMUConfig or wlanHESUConfig object.

Output Arguments

info — Information about RU properties of object
structure

Information about the RU properties of the input object, returned as a structure.

NumUsers — Number of users
integer in the range [1, 74]

Number of users, returned as an integer in the range [1, 74].

Data Types: double

1-6

rulnfo

NumRUs — Number of RUs
integer in the range [1, 74]

Number of RUs, returned as an integer in the range [1, 74].

Data Types: double

RUIndices — RU indices
integer | vector

RU indices, returned as an integer or a 1-by-NumRUs vector with elements that have
integer values in the range [1, 8].

Data Types: double

RUSizes — Resource unit sizes
integer | vector

Resource unit sizes, returned as an integer or a 1-by-NumRUs vector with elements that
have integer values in the range [1, 8].

Data Types: double

NumUsersPerRU — Number of users per RU
integer | vector

Number of users per RU, returned as an integer or a 1-by-NumRUs vector with elements
that have integer values in the range [1, 8].

Data Types: double

NumSpaceTimeStreamsPerRU — Number of space-time streams per RU
integer | vector

Number of space-time streams per RU, returned as an integer or a 1-by-NumRUsvector
with elements that have integer values in the range [1, 8].

Data Types: double

PowerBoostFactorPerRU — Power boost factor per RU
integer | vector

Power boost factor per RU, returned as an integer or a 1-by-NumRUs vector with elements
that have integer values in the range [1, 8].

1-7

1 Functions — Alphabetical List

Data Types: double

RUNumbers — RU numbers
integer | vector

RU numbers, returned as an integer or a 1-by-NumRUs vector with elements that have
integer values in the range [1, 8]. RUNumbers correspond to the indices for each active
RU configured in the cfgHE.RU object. An RU is not active when it contains a single
station with its station identifier set to 2046.

Data Types: double

Data Types: struct

See Also

Functions
getPSDULength | wlanHEMUConfig | wlanHESUConfig | wlanWaveformGenerator

Introduced in R2018b

1-8

wlanBCCDecode

wlanBCCDecode

Convolutionally decode input data

Syntax

y = wlanBCCDecode(sym, rate)

y = wlanBCCDecode(sym, rate,decType)

y = wlanBCCDecode(sym, rate, tDepth)

y = wlanBCCDecode(sym, rate,decType, tDepth)
Description

y = wlanBCCDecode(sym, rate) convolutionally decodes the input sym using a binary
convolutional code (BCC) at the specified rate. The BCC is defined in IEEE®
802.11™-2012 Sections 18.3.5.6 and 20.3.11.6.

y = wlanBCCDecode(sym, rate,decType) specifies the decoding type of the Viterbi
decoding algorithm.

y = wlanBCCDecode(sym, rate,tDepth) specifies the traceback depth of the Viterbi
decoding algorithm.

y = wlanBCCDecode(sym, rate,decType, tDepth) specifies the decoding type and
the traceback depth. decType and tDepth can be placed in any order after rate.

Examples

BCC-Decode Two Encoded Streams
Decode two encoded streams of soft bits by using a BCC of rate 1/2.

Create the sequence of data bits.

dataBits = randi([0 1],100,1,'int8');

1-9

1 Functions — Alphabetical List

Parse the data bits as defined in IEEE® 802.11™-2012 Section 20.3.11.5 and IEEE®
802.11ac™-2013 Section 22.3.10.5.2. numES is the number of encoded streams.

numgs = 2;
parsedData = reshape(dataBits,numES,[]).";

BCC-encode the parsed sequence.

encodedData = wlanBCCEncode(parsedData, '1/2");
Convert the encoded bits to soft bits (i.e. LLR demodulation).
demodData = double(1l-2*encodedData);

BCC-decode the demodulated data.

decodedData = wlanBCCDecode(demodData, '1/2");
Deparse the decoded data.

deparsedData = reshape(decodedData.',[],1);

Verify that the decoded data matches the original data.

isequal(dataBits,deparsedData)

ans = logical
1

BCC-Decode Soft Bits
Decode a sequence of soft bits by using a BCC of rate 3/4 and a traceback depth of 60.

Create the sequence of data bits.

dataBits = randi([0 11,300,1);

BCC-encode the sequence of bits.

encodedData = wlanBCCEncode(dataBits,3/4);

Convert the encoded bits to soft bits (i.e. LLR demodulation).

1-10

wlanBCCDecode

demodData = 1-2*encodedData;

BCC-decode the demodulated bits.

tDepth = 60;
decodedData = wlanBCCDecode(demodData,3/4,tDepth);

Verify that the decoded data matches the original data.
isequal(dataBits,decodedData)

ans = logical
1

BCC-Decode Hard Bits

Decode a sequence of hard bits by using a BCC of rate 3/4 and a traceback depth of 45.
Create the sequence of data bits.

dataBits = randi([0 1],300,1,'int8');

BCC-encode the sequence of bits.

encodedData = wlanBCCEncode(dataBits, '2/3');

Perform hard BCC decoding on the encoded bits. Specify a traceback depth 45.

tDepth = 45;
decodedBits = wlanBCCDecode(encodedData, '2/3"', "hard', tDepth);

Verify that the decoded bits match the original bits.
isequal(dataBits,decodedBits)

ans = logical
1

1-11

1 Functions — Alphabetical List

1-12

Input Arguments

sym — Input sequence
matrix

Input sequence of symbols to decode, specified as a numeric matrix of integers. The
number of columns must be the number of encoded streams. Each stream is encoded
separately. When decTypeis 'soft' or not specified, sym must be a real matrix with log-
likelihood ratios. Positive values represent a logical 0 and negative values represent a
logical 1.

Data Types: double | int8

rate — Code rate
1/2112/3|3/4]5/6

Code rate of the binary convolutional code (BCC), specified as a scalar, character array, or
string scalar. rate must be a numeric value equal to 1/2, 2/3, 3/4, or 5/6, or a character
vector or string scalar equal to '1/2"', '2/3"', '3/4',0or '5/6".

Example: '3/4"'
Data Types: double | char | string

decType — Decoding type
'soft' (default) | 'hard’

Decoding type of the binary convolutional code (BCC), specified as a character vector or a
string scalar. It can be 'hard' for a hard input Viterbi algorithm, or 'soft' for a soft
input Viterbi algorithm without any quantization.

Data Types: char | string

tDepth — Traceback depth
positive integer

Traceback depth of the Viterbi decoding algorithm, specified as a positive integer less
than or equal to the number of input symbols in sym.

Example: y = wlanBCCDecode(sym, '1/2"', "hard',50)

Data Types: double

wlanBCCDecode

Output Arguments

y — Binary convolutionally decoded output
matrix

Binary convolutionally decoded output, returned as a binary matrix of integers. The
number of rows of y is equal to the number of rows of input sym multiplied by rate,
rounded to the next integer. The number of columns of y is equal to the number of
columns of sym.

Data Types: int8

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

vitdec | wlanBCCEncode

Introduced in R2017b

1-13

1 Functions — Alphabetical List

1-14

wlanBCCDeinterleave

Deinterleave binary convolutionally interleaved input

Syntax

wlanBCCDeinterleave(bits, type, numCBPSSI, cbw)
wlanBCCDeinterleave(bits, type, numCBPSSI)

y
y

Description

y = wlanBCCDeinterleave(bits, type,numCBPSSI, cbw) outputs the binary
convolutionally deinterleaved input bits for a specified interleaver type, as defined in
IEEE 802.11-2012 Section 18.3.5.7, IEEE 802.11ac™-2013 Section 22.3.10.8, and IEEE
802.11ah™ Section 24.3.9.8. numCBPSST specifies the number of coded bits per OFDM
symbol per spatial stream per interleaver block and cbw speficies the channel bandwidth.

y = wlanBCCDeinterleave(bits, type,numCBPSSI) outputs the deinterleaved
input bits for the non-HT interleaver type.

Examples

Interleave and Deinterleave VHT Data Field
Perform BCC interleaving and deinterleaving for the VHT interleaving type.

Define the input parameters. Set the number of coded bits per OFDM symbol per spatial
stream per interleaver block to 52, the channel bandwidth to 20Mhz and the number of
spatial streams, named as numsSS, to 4.

numCBPSSI = 52;
chanBW = 'CBW20"';
numSS = 4;

Create a sequence of bits for two OFDM symbols, four spatial streams, and one segment.

wlanBCCDeinterleave

bits = randi([0 1], (2*numCBPSSI),numSS,1);

Perform BCC interleaving on the bits.

intBits = wlanBCCInterleave(bits, 'VHT', numCBPSSI, chanBW);
Perform BCC deinterleaving on the interleaved bits.

out = wlanBCCDeinterleave(intBits, 'VHT',numCBPSSI, chanBW);
Verify that the deinterleaved data matches the original data.
isequal(bits,out)

ans = logical
1

Interleave and Deinterleave Non-HT Data Field
Perform BCC interleaving and deinterleaving for the non-HT interleaving type.

Define the input parameters. Set the number of coded bits per OFDM symbol per spatial
stream per interleaver block to 48.

numCBPSSI = 48;

Create a sequence of random bits for one OFDM symbol, one spatial stream, and one
segment.

bits = randi([0 1],numCBPSSI,1);
Perform BCC interleaving on the bits.

intBits = wlanBCCInterleave(bits, 'Non-HT', numCBPSSI);

Perform BCC deinterleaving on the interleaved bits.

out = wlanBCCDeinterleave(intBits, 'Non-HT', numCBPSSI);
Verify that the deinterleaved data matches the original data.

isequal(bits,out)

1-15

1 Functions — Alphabetical List

ans = logical
1

Input Arguments

bits — Input sequence
matrix | 3-D array

Input sequence containing binary convolutionally interleaved data, specified as an
(NcapssiXNsym)-by-Nss-by-Nsgg array, where:

* Ncppsst is the number of coded bits per OFDM symbol per spatial stream per
interleaver block.
* Ngym is the number of OFDM symbols.

* Nggis the number of spatial streams.

+ Iftype= 'Non-HT', then Ngs must be 1.
o Iftype= 'VHT', then Ngs must be from 1 to 8.
* Nggg is the number of segments.

Data Types: double

type — Type of interleaving
"VHT' | '"Non-HT'

The type of interleaving, specified as 'VHT' or 'Non-HT'.
Data Types: char | string

numCBPSSI — Number of coded bits per OFDM symbol per spatial stream per
interleaver block
positive integer

Number of coded bits per OFDM symbol per spatial stream per interleaver block specified
as a positive integer. As defined in IEEE 802.11ac-2013 Table 22-6, the value of
numCBPSSI depends on the interleaving type:

"Non-HT' NgpXNgpgcs

1-16

wlanBCCDeinterleave

'VHT' NgspXNgpscs/Nskg

where:

* Ngp is the number of data subcarriers.

* Nppgcs is the number of coded bits per subcarrier per spatial stream, specified as 1, 2,
4,6, or 8.

* Nggg is the number of segments.

When type= 'Non-HT', numCBPSSI can be 48, 96, 192, 288, and 384, since N¢gpssr = 48
X Ngpscs-

When type= 'VHT', numCBPSSI can be 24, 48, 96, 144, and 192, since N¢ppsg; = 24 X
NBPSCS'

Data Types: double

cbw — Channel bandwidth

'CBW1' | 'CBW2' | 'CBW4' | 'CBW8' | 'CBW10' | 'CBW16 | 'CBW20" | 'CBW40" |
'CBW8O' | 'CBW160"

Channel bandwidth in MHz, specified as 'CBW1','CBW2"', 'CBW4"','CBW8', 'CBW10",
"CBW16', 'CBW20"', 'CBW40"', 'CBW8O', or 'CBW160'. When the interleaver type is set
to 'Non-HT', then cbw is optional.

Data Types: char | string

Output Arguments

y — Deinterleaved output
matrix | 3-D array

Deinterleaved output, returned as an (N¢gpssiXNsya)-by-Ngs-by-Ngg; array, where:

* Ncppss is the number of coded bits per OFDM symbol per spatial stream per
interleaver block.

* Ngym is the number of OFDM symbols.

* Ngg is the number of spatial streams.

* Nggg is the number of segments.

1-17

1 Functions — Alphabetical List

1-18

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

convdeintrlv |wlanBCCInterleave

Introduced in R2017b

wlanBCCEncode

wlanBCCEncode

Convolutionally encode binary data

Syntax

y = wlanBCCEncode(bits, rate)

Description

y = wlanBCCEncode(bits, rate) convolutionally encodes the binary input bits
using a binary convolutional code (BCC) at the specified rate. The BCC is defined in
IEEE 802.11-2012 Sections 18.3.5.6 and 20.3.11.6.

Examples

BCC-Encode Bits

Encode a sequence of data bits by using a BCC of rate 3/4.
Create the sequence of data bits.

dataBits = randi([0 1],300,1);

BCC-encode the data bits.

encodedData = wlanBCCEncode(dataBits, '3/4');
size(encodedData)

ans = 1x2

400 1

1-19

1 Functions — Alphabetical List

1-20

BCC-Encode Two Streams
Encode two streams of data bits by using a BCC of rate 1/2.

Create the sequence of data bits.
dataBits = randi([0 1],100,1,'int8');

Parse the sequence of bits as defined in IEEE® 802.11™-2012 Section 20.3.11.5 and
IEEE® 802.11ac™-2013 Section 22.3.10.5.2. numES is the number of encoded streams.

numkEsS = 2;
parsedData = reshape(dataBits,numES,[]).";

BCC-encode the parsed sequence.

encodedData = wlanBCCEncode(parsedData,1/2);
size(encodedData)

ans = 1x2

100 2

Input Arguments

bits — Input sequence
matrix

Input sequence with data bits to encode, specified as a binary matrix. The number of
columns must equal the number of encoded streams. Each stream is encoded separately.

Data Types: double | int8

rate — Code rate
1/212/3]3/4|5/6

Code rate of the binary convolutional code (BCC), specified as a scalar, character array, or
string scalar. rate must be a numeric value equal to 1/2, 2/3, 3/4, or 5/6, or a character
vector or string scalar equal to '1/2"', '2/3"', '3/4',0or '5/6".

Example: '1/2"

wlanBCCEncode

Data Types: double | char | string

Output Arguments

y — Binary convolutionally encoded output
matrix

Binary convolutionally encoded output, returned as a binary matrix of the same type of
bits. The number of rows of y is the result of dividing the number of rows of input bits
by rate, rounded to the next integer. The number of columns of y is equal to the number
of columns of bits.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

convenc | wlanBCCDecode

Introduced in R2017b

1-21

1 Functions — Alphabetical List

1-22

wlanBCClinterleave

Interleave binary convolutionally encoded input

Syntax

wlanBCCInterleave(bits, type,numCBPSSI, cbw)
wlanBCCInterleave(bits,type, numCBPSSI)

y
y

Description

y = wlanBCCInterleave(bits,type,numCBPSSI, cbw) outputs the interleaved
binary convolutionally encoded (BCC) input bits for a specified interleaver type, as
defined in IEEE 802.11-2012 Section 18.3.5.7, IEEE 802.11ac-2013 Section 22.3.10.8,
and IEEE 802.11ah Section 24.3.9.8. numCBPSSI specifies the number of coded bits per
OFDM symbol per spatial stream per interleaver block and cbw speficies the channel
bandwidth.

y = wlanBCCInterleave(bits, type,numCBPSSI) outputs the interleaved input
bits for the non-HT interleaver type.

Examples

Interleave VHT Data Field
Perform BCC interleaving for the 'VHT' interleaving type.

Define the input parameters. Set the number of coded bits per OFDM symbol per spatial
stream per interleaver block to 52, the channel bandwidth to 20Mhz and the number of
spatial streams, named as numSS, to 4.

numCBPSSI = 52;
cbw = 'CBW20';
numsS = 4;

wlanBCClnterleave

Create a sequence of bits for two OFDM symbols, four spatial streams, and one segment.
inBits = randi([0 11, (2*numCBPSSI),numSS,1, 'int8"');
Perform BCC interleaving on the bits.

out = wlanBCCInterleave(inBits, 'VHT', numCBPSSI, cbw);

Interleave Non-HT Data Field
Perform BCC interleaving for the non-HT interleaving type.

Define the input parameters. Set the number of coded bits per OFDM symbol per spatial
stream per interleaver block to 48.

numCBPSSI = 48;

Create a sequence of random bits for one OFDM symbol, one spatial stream, and one
segment.

inBits = randi([0 1],numCBPSSI,1);

Perform BCC interleaving on the bits.

out = wlanBCCInterleave(inBits, 'Non-HT"',numCBPSSI);
Compare the original sequence with the interleaved one.
[inBits out]

ans = 48x2

PFRPHOORKHOR R
HFOHOORHOO®R

1-23

1 Functions — Alphabetical List

Interleave Sequence
Get the interleaving sequence of a non-HT interleaver type.

Define the input parameters. Set the number of coded bits per OFDM symbol per spatial
stream per interleaver block to 192.

numCBPSSI = 192;

Create a numeric sequence from 1 to numCBPSSI.
seq = (1l:numCBPSSI).';

Perform BCC interleaving on the numeric sequence.

intSeq = wlanBCCInterleave(seq, 'Non-HT',numCBPSSI);
intSeq(1:10)

ans = 10x1

1
17
33
49
65
81
97

113
129
145

Input Arguments

bits — Input sequence
matrix | 3-D array

1-24

wlanBCClnterleave

Input sequence containing binary convolutionally encoded (BCC) data, specified as an
(Ncepssi X Nsym)-by-Nss-by-Nsgg array, where:

* Ncppsg is the number of coded bits per OFDM symbol per spatial stream per
interleaver block.

* Ngym is the number of OFDM symbols.

* Ngg is the number of spatial streams.

+ Iftype= 'Non-HT', then Ngs must be 1.
o Iftype= 'VHT', then Ngs must be from 1 to 8.
* Nggg is the number of segments.

Data Types: double | int8

type — Type of interleaving
"VHT' | "Non-HT"'

The type of interleaving, specified as 'VHT' or 'Non-HT".
Data Types: char | string

numCBPSSI — Number of coded bits per OFDM symbol per spatial stream per
interleaver block
positive integer

Number of coded bits per OFDM symbol per spatial stream per interleaver block specified
as a positive integer. As defined in IEEE 802.11ac-2013 Table 22-6, the value of
numCBPSSTI depends on the interleaving type:

"Non-HT"' NSDXNBPSCS
'VHT' NspXNppscs/Nseg
where:

* Ngp is the number of data subcarriers.

* Ngpscs is the number of coded bits per subcarrier per spatial stream, specified as 1, 2,
4, 6, or 8.

* Nggg is the number of segments.

When type= 'Non-HT', numCBPSSI can be 48, 96, 192, 288, and 384, since N¢gpss; = 48
X Ngpscs-

1-25

1 Functions — Alphabetical List

1-26

When type= 'VHT', numCBPSSI can be 24, 48, 96, 144, and 192, since N¢ppsg = 24 X
NBPSCS'

Data Types: double

cbw — Channel bandwidth
"CBW1' | 'CBW2' | 'CBW4' | 'CBW8' | 'CBW10' | 'CBW16 | 'CBW20"' | 'CBW40" |
'CBW80' | 'CBW160"

Channel bandwidth in MHz, specified as 'CBW1','CBW2', 'CBW4','CBW8', 'CBW10',
"CBW16', 'CBW20"', 'CBW40"', 'CBW8O', or 'CBW160'. When the interleaver type is set
to 'Non-HT', then cbw is optional.

Data Types: char | string

Output Arguments

y — Interleaved output
matrix | 3-D array

Interleaved output, returned as an (Ncgpssi X Nsym)-by-Ngs-by-Nggg array, where:

* Ncppss is the number of coded bits per OFDM symbol per spatial stream per
interleaver block.

* Ngyy is the number of OFDM symbols.
* Nggis the number of spatial streams.
* Nggg is the number of segments.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

wlanBCClnterleave

See Also

convintrlv | wlanBCCDeinterleave

Introduced in R2017b

1-27

1 Functions — Alphabetical List

1-28

wlanCoarseCFOEstimate

Coarse estimate of carrier frequency offset

Syntax

fOffset
fOffset

wlanCoarseCFOEstimate(rxSig, cbw)
wlanCoarseCFOEstimate(rxSig, cbw,corrOffset)

Description

fOffset = wlanCoarseCFOEstimate(rxSig, cbw) returns a coarse estimate of the
carrier frequency offset (CFO) given received time-domain “L-STF” on page 1-34!
samples and channel bandwidth.

fOffset = wlanCoarseCFOEstimate(rxSig, cbw,corrOffset) returns a coarse
estimate given correlation offset, corrOffset.

Examples

Coarse Estimate of CFO for Non-HT Waveform

Create a non-HT configuration object.

nht = wlanNonHTConfig;

Generate a non-HT waveform.

txSig = wlanWaveformGenerator([1;0;0;1],nht);

Create a phase and frequency offset object and introduce a 2 kHz frequency offset.

1. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights

reserved.

wlanCoarseCFOEstimate

pfOffset = comm.PhaseFrequencyOffset('SampleRate',20e6, 'Frequency0ffset',2000);
rxSig = pfOffset(txSig);

Extract the L-STFE.

ind = wlanFieldIndices(nht, 'L-STF');
rxLSTF = rxSig(ind(1):ind(2),:);

Estimate the frequency offset from the L-STFE.

freq0ffsetEst wlanCoarseCFOEstimate (rxLSTF, 'CBW20")

freq0ffsetEst 2.0000e+03

Estimate and Correct CFO for VHT Waveform with Correlation Offset

Estimate the frequency offset for a VHT signal passing through a noisy, TGac channel.
Correct for the frequency offset.

Create a VHT configuration object and create the L-STF.

vht = wlanVHTConfig;
txstf = wlanLSTF(vht);

Set the channel bandwidth and sample rate.

cbw = 'CBW80O';
fs = 80e6;

Create TGac and thermal noise channel objects. Set the delay profile of the TGac channel
to 'Model-C"'. Set the noise figure of the thermal noise channel to 9 dB.

tgacChan = wlanTGacChannel('SampleRate',fs, 'ChannelBandwidth', cbw,
'DelayProfile', 'Model-C', 'LargeScaleFadingEffect', 'Pathloss');

noise = comm.ThermalNoise('SampleRate',fs, 'NoiseMethod', 'Noise figure',
'NoiseFigure',9);

Pass the L-STF through the noisy TGac channel.

rxstfNoNoise = tgacChan(txstf);
rxstf = noise(rxstfNoNoise);

1-29

1 Functions — Alphabetical List

Create a phase and frequency offset object and introduce a 750 Hz frequency offset.
pfOffset = comm.PhaseFrequencyOffset('SampleRate',fs,

'FrequencyOffsetSource', 'Input port');
rxstf = pfOffset(rxstf,750);

For the model-C delay profile, the RMS delay spread is 30 ns, which is 3/8 of the 80 ns
short training symbol duration. As such, set the correlation offset to 0.375.

corrOffset = 0.375;
Estimate the frequency offset. Your results may differ slightly.

fOffsetEst

wlanCoarseCFOEstimate(rxstf, cbw,corrOffset)

fOffsetEst

746.2700
The estimate is very close to the introduced CFO of 750 Hz.

Change the delay profile to 'Model-E', which has an RMS delay spread of 100 ns.

release(tgacChan)
tgacChan.DelayProfile = 'Model-E';

Pass the transmitted signal through the modified channel and apply the 750 Hz CFO.
rxstfNoNoise = tgacChan(txstf);

rxstf = noise(rxstfNoNoise);

rxstf = pfOffset(rxstf,750);

Estimate the frequency offset.

fOffsetEst

wlanCoarseCFOEstimate(rxstf, cbw,corrOffset)

fOffsetEst

947.7234

The estimate is inaccurate because the RMS delay spread is greater than the duration of
the training symbol.

Set the correlation offset to the maximum value of 1 and estimate the CFO.

corrOffset = 1;
fOffsetEst = wlanCoarseCFOEstimate(rxstf,cbw,corrOffset)
fOffsetEst = 745.3640

1-30

wlanCoarseCFOEstimate

The estimate is accurate because the autocorrelation does not use the first training
symbol. The channel delay renders this symbol useless.

Correct for the estimated frequency offset.
rxstfCorrected = pfOffset(rxstf,-fOffsetEst);
Estimate the frequency offset of the corrected signal.

fOffsetEstCorr = wlanCoarseCFOEstimate(rxstfCorrected, cbw,corrOffset)

fOffsetEstCorr

2.7402e-11

The corrected signal has negligible frequency offset.

Two-Step CFO Estimation and Correction

Estimate and correct for a significant carrier frequency offset in two steps. Estimate the
frequency offset after all corrections have been made.

Set the channel bandwidth and the corresponding sample rate.

cbw = 'CBW40';
fs = 40e6;

Coarse Frequency Correction

Generate an HT format configuration object.

cfg = wlanHTConfig('ChannelBandwidth', cbw);
Generate the transmit waveform.

txSig = wlanWaveformGenerator([1;0;0;1],cfg);

Create TGn and thermal noise channel objects. Set the noise figure of the receiver to 9
dB.

tgnChan = wlanTGnChannel('SampleRate',fs, 'DelayProfile', 'Model-D"',
'LargeScaleFadingEffect', 'Pathloss and shadowing');

noise = comm.ThermalNoise('SampleRate', fs,
'NoiseMethod', 'Noise figure',
'NoiseFigure',9);

1-31

1 Functions — Alphabetical List

1-32

Pass the waveform through the TGn channel and add noise.

rxSigNoNoise = tgnChan(txSig);
rxSig = noise(rxSigNoNoise);

Create a phase and frequency offset object to introduce a carrier frequency offset.
Introduce a 2 kHz frequency offset.

pfOffset = comm.PhaseFrequencyOffset('SampleRate',fs, 'Frequency0ffsetSource', 'Input po

rxSig = pfOffset(rxSig,2e3);

Extract the L-STF signal for coarse frequency offset estimation.

istf = wlanFieldIndices(cfg, 'L-STF');
rxstf = rxSig(istf(1l):istf(2),:);

Perform a coarse estimate of the frequency offset. Your results may differ.

foffsetl

wlanCoarseCFOEstimate(rxstf, cbw)

foffsetl 2.0221e+03

Correct for the estimated offset.

rxSigCorrl = pfOffset(rxSig,-foffsetl);
Fine Frequency Correction

Extract the L-LTF signal for fine offset estimation.

iltf = wlanFieldIndices(cfg, 'L-LTF');
rxltfl = rxSigCorrl(iltf(1):i1tf(2),:);

Perform a fine estimate of the corrected signal.

foffset2 wlanFineCFOEstimate(rx1tfl, cbw)

foffset2 -11.0795

The corrected signal offset is reduced from 2000 Hz to approximately 7 Hz.

Correct for the remaining offset.

rxSigCorr2 = pfOffset(rxSigCorrl, -foffset2);

Determine the frequency offset of the twice corrected signal.

wlanCoarseCFOEstimate

rx1tf2 = rxSigCorr2(iltf(1):iltf(2),:);
deltaFreq = wlanFineCFOEstimate(rx1tf2, cbw)

deltaFreq = -2.0374e-11

The CFO is zero.

Input Arguments

rxSig — Received signal
matrix

Received signal containing an L-STF, specified as an Ng-by-Ny matrix. Ng is the number of
samples in the L-STF and Ny, is the number of receive antennas.

Note If the number of samples in rxSig is greater than the number of samples in the L-
STEF, the trailing samples are not used to estimate the carrier frequency offset.

Data Types: double

cbw — Channel bandwidth
"CBW5' | 'CBW10O' | 'CBW20' | 'CBW40' | 'CBW8O' | 'CBW160"

Channel bandwidth in MHz, specified as: 'CBW5', 'CBW10', 'CBW20', 'CBW40"',
'CBW80O', or 'CBW160"'.

Data Types: char | string

corrO0ffset — Correlation offset
0.75 (default) | real scalar from 0 to 1

Correlation offset as a fraction of a short training symbol, specified as a real scalar from 0
to 1. The duration of the short training symbol varies with bandwidth. For more
information, see “L-STF” on page 1-34.

Data Types: double

1-33

1 Functions — Alphabetical List

1-34

Output Arguments

fOffset — Frequency offset

real scalar

Frequency offset in Hz, returned as a real scalar.

Data Types: double

Definitions

L-STF

The legacy short training field (L-STF) is the first field of the 802.11 OFDM PLCP legacy
preamble. The L-STF is a component of VHT, HT, and non-HT PPDUs.

Legacy Preamble

L-5TF

TEH:IH‘T

The L-STF duration varies with channel bandwidth.

Channel Bandwidth
(MHz2)

Subcarrier
Frequency
Spacing, A¢ (kHz)

Fast Fourier
Transform (FFT)
Period

(Teer = 1/ A¢)

L-STF Duration
(Tshorr = 10 X Tger /
4)

20, 40, 80, and 160

312.5

3.2 us

8 us

10

156.25

6.4 us

16 ps

wlanCoarseCFOEstimate

Channel Bandwidth |Subcarrier Fast Fourier L-STF Duration
(MHz) Frequency Transform (FFT) (Tshort = 10 X Tger /
Spacing, Ag (kHz) |Period 4)
(Teer = 1/ A¢)
5 78.125 12.8 ps 32 ps

Because the sequence has good correlation properties, it is used for start-of-packet
detection, for coarse frequency correction, and for setting the AGC. The sequence uses 12
of the 52 subcarriers that are available per 20 MHz channel bandwidth segment. For 5
MHz, 10 MHz, and 20 MHz bandwidths, the number of channel bandwidths segments is
1.

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[2] Li, Jian. “Carrier Frequency Offset Estimation for OFDM-Based WLANSs.” IEEE Signal
Processing Letters. Vol. 8, Issue 3, Mar 2001, pp. 80-82.

[3] Moose, P. H. “A technique for orthogonal frequency division multiplexing frequency
offset correction.” IEEE Transactions on Communications. Vol. 42, Issue 10, Oct
1994, pp. 2908-2914.

[4] Perahia, E. and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac. 2nd
Edition. United Kingdom: Cambridge University Press, 2013.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

1-35

1 Functions — Alphabetical List

See Also

comm.PhaseFrequencyOffset |wlanFineCFOEstimate | wlanLSTF

Introduced in R2015b

1-36

wlanConstellationDemap

wlanConstellationDemap

Constellation demapping

Syntax

y = wlanConstellationDemap(sym,noiseVarEst, numBPSCS)

y = wlanConstellationDemap(sym,noiseVarEst, numBPSCS,demapType)

y = wlanConstellationDemap(sym,noiseVarEst, numBPSCS, phase)

y = wlanConstellationDemap(sym,noiseVarEst,numBPSCS, demapType, phase)
Description

y = wlanConstellationDemap(sym,noiseVarEst,numBPSCS) demaps the received
input sym using the soft-decision approximate LLR method for the specified number of
coded bits per subcarrier per spatial stream numBPSCS. The received symbols must be
generated with one of these modulations:

BPSK, QPSK, 16QAM, or 64QAM, as per IEEE 802.11-2012, Section 18.3.5.8
256QAM, as per IEEE 802.11ac-2012, Section 22.3.10.9.1
1024QAM, as per IEEE 802.11-16/0922r2

y = wlanConstellationDemap(sym,noiseVarEst, numBPSCS, demapType)
specifies the demapping type.

y = wlanConstellationDemap(sym,noiseVarEst,numBPSCS,phase) derotates
the symbols clockwise before demapping by the number of radians specified in phase.

y = wlanConstellationDemap(sym,noiseVarEst, numBPSCS,demapType, phase)
specifies the demapping type and the phase rotation.

Examples

1-37

1 Functions — Alphabetical List

1-38

256QAM Demapping

Perform a 256QAM demapping, as defined in IEEE® 802.11ac™-2013, Section
22.3.10.9.1.

Create the sequence of data bits.
bits = randi([0 1]1,416,1, 'int8"');

Perform the constellation mapping on the data bits by using a 256QAM modulation. The
size of the output returned equals the size of the input sequence divided by eight.

numBPSCS = 8;
mappedData = wlanConstellationMap(bits,numBPSCS);
size(mappedData)

ans = 1Ix2

52 1

Perform the 256QAM constellation demapping. Because the default demapping type is
soft, the output is a vector of soft bits.

noiseVar = 0;
demappedData = wlanConstellationDemap(mappedData,noiseVar, numBPSCS);
size(demappedData)

ans = 1x2

416 1

Constellation Demapping with Hard Demodulation

Perform a 256QAM demapping by using hard demodulation. The demapping is defined in
IEEE® 802.11™-2012 Section 18.3.5.8

Create the sequence of data bits.
bits = randi([0 1],416,1);

Perform the constellation mapping on the data bits by using a 256QAM constellation.

wlanConstellationDemap

numBPSCS = 8;

mappedData = wlanConstellationMap(bits,numBPSCS);

Perform the hard 256QAM constellation demapping. Because it is a hard demapping, the
estimated noise variance is ignored.

noiseVar = 0;

demapType = 'hard';
demappedData = wlanConstellationDemap(mappedData,noiseVar, numBPSCS, demapType) ;

Verify that the demapped data matches the original data.
isequal(bits,demappedData)

ans = logical
1

BPSK and QBPSK Demapping for VHT-SIG-A Field

BPSK and QBPSK demapping for different OFDM symbols for the VHT-SIG-A field by
using a soft demodulation. The demapping is defined in IEEE® 802.11ac™-2013 Section
22.3.8.3.3

Create the sequence of data bits. Specify the two OFDM symbols in columns.
bits = randi([0 1],48,2,'int8");

Perform constellation mapping on the data bits. Specify the size of the constellation
rotation as the number in columns of the input sequence. The first column is mapped with
a BPSK modulation. The second column is modulated with a QBPSK modulation.

numBPSCS = 1;
phase = [0 pi/2];
mappedData = wlanConstellationMap(bits,numBPSCS, phase);

Perform the constellation demapping with an estimated variance noise equal to zero (no
added noise). To derotate the constellation, specify the same phase as in the mapping
function. The output is a vector of soft bits ready to be the input of a convolutional
decoder.

1-39

1 Functions — Alphabetical List

noiseVar = 0;
demappedData = wlanConstellationDemap(mappedData,noiseVar, numBPSCS, phase);

Verify that the demapped data matches the original data. Because no noise is present, you
can recover the original data without errors by assigning the negative values to a logical
1 and the positive values to a logical 0. In other words, you can convert the soft bits into
hard bits.

demappedBits = int8((demappedData<=0));
isequal(bits,demappedBits)

ans = logical
1

4-D Array Demapping
QBPSK demapping on a four-dimensional array by using hard demodulation.

Create the sequence of data bits as an array of four dimensions, with 416 coded bits per
subcarrier per spatial stream per interleaver block, four OFDM symbols, two spatial
streams, and two segments.

numCBPSSI = 416;

numSym = 4;

numsSS = 2;

numSeg = 2;

bits = randi([0 1],numCBPSSI, numSym, numSS, numSeq);
size(bits)

ans = 1x4

416 4 2 2

i
Perform QBPSK constellation mapping on the data bits with a rotation of 2 radians.
numBPSCS = 1;
phase = pi/2;

mappedData = wlanConstellationMap(bits, numBPSCS, phase);
size(mappedData)

1-40

wlanConstellationDemap

ans = 1x4

416 4 2 2

Perform hard QBPSK constellation demapping. To de-rotate the constellation, specify the
same phase as in the mapping function. Because it is a hard demapping, the estimated
noise variance is ignored.

noiseVar = 0;
demapType = 'hard';
demappedData = wlanConstellationDemap(mappedData,noiseVar,numBPSCS,demapType);

Verify that the demapped data matches the original data.
isequal(bits,demappedData)

ans = logical
1

Input Arguments

sym — Input sequence
vector | matrix | multidimensional array

Input sequence of received symbols, specified as a numeric vector, matrix, or
multidimensional array of integers.

Data Types: double

Complex Number Support: Yes

noiseVarEst — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar. When the demapping type is
set to 'hard', the noise variance estimate is not required and therefore is ignored.

Example: 0.7071
Data Types: double

1-41

1 Functions — Alphabetical List

1-42

numBPSCS — Number of coded bits per subcarrier per spatial stream
1121416810

Number of coded bits per subcarrier per spatial stream, specified as log2(M), where M is
the modulation order. Therefore, numBPSCS must equal:

* 1 for a BPSK modulation

« 2 for a QPSK modulation

e 4 for a 16QAM modulation

* 6 for a 64QAM modulation

o 8 fora 256QAM modulation

* 10 for a 1024QAM modulation

Example: 4
Data Types: double

demapType — Demapping type
'soft' (default) | 'hard'

Demapping type, specified as a character vector or a string scalar. It can be "hard"' for
hard-decision demapping or 'soft' for the soft-decision approximate LLR method.

Data Types: double

phase — Constellation rotation
scalar | vector | multidimensional array

Constellation rotation in radians, specified as a scalar, vector, or multidimensional array.
The size of phase must be compatible with the size of the input sym. phase and sym have
compatible sizes if, for each corresponding dimension, the dimension sizes are either
equal or one of them is 1. When one of the dimensions of sym is equal to 1, and the
corresponding dimension of phase is larger than 1, then the output dimensions have the
same size as the dimensions of phase.

Example: pi*(0:size(bits,1)/numBPSCS-1).'/2;
Data Types: double

wlanConstellationDemap

Output Arguments

y — Demapped symbols
vector | matrix | multidimensional array

Demapped symbols, returned as a numeric vector, matrix, or multidimensional array of

integers. y has the same size as sym except for the number of rows, which is equal to the
number of rows of sym, multiplied by numBPSCS.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

wlanConstellationMap

Introduced in R2017b

1-43

1 Functions — Alphabetical List

1-44

wlanConstellationMap

Constellation mapping

Syntax

wlanConstellationMap(bits, numBPSCS)
wlanConstellationMap(bits, numBPSCS, phase)

y
y

Description

y = wlanConstellationMap(bits,numBPSCS) maps the input sequence bits using
the number of coded bits per subcarrier per spatial stream, numBPSCS, to one of the
following modulations:

* BPSK, QPSK, 16QAM, or 64QAM, as per IEEE 802.11-2012, Section 18.3.5.8
* 256QAM, as per IEEE 802.11ac-2012, Section 22.3.10.9.1
* 1024QAM, as per IEEE 802.11-16/0922r2

The constellation mapping is performed column-wise.

y = wlanConstellationMap(bits,numBPSCS, phase) rotates the constellation
points counterclockwise by the number of radians specified in phase.

Examples

256QAM Mapping
Perform a 256QAM mapping, as defined in IEEE® 802.11ac™-2013 Section 22.3.10.9.1.

Create the sequence of data bits.
bits = randi([0 1]1,416,1, 'int8"');

Perform the constellation mapping on the data bits with a 256QAM modulation.

wlanConstellationMap

numBPSCS = 8;

mappedData = wlanConstellationMap(bits,numBPSCS);

The size of the output returned by this modulation equals the size of the input sequence
divided by eight.

size(mappedData)
ans = 1x2

52 1

n/2-BPSK Mapping

T

Perform a 2-BPSK mapping on a sequence of data bits as defined in IEEE®
802.11ad™-2012 Section 21.6.3.2.4.

Create the sequence of data bits.
bits = randi([0 1],512,1);

kI

Perform the BPSK mapping on the data bits with a rotation of 2 radians. Note that the
size of the constellation rotation phase is equal to the size of input sequence.

numBPSCS

=1’
phase = pi*(0:size(bits,1)/numBPSCS-1).'/2;
mappedData = wlanConstellationMap(bits,numBPSCS, phase);

As we performed a BPSK mapping, the number of symbols per bit is one, therefore the
size of the output is equal to the size of the original sequence.

size(mappedData)
ans = 1Ix2

512 1

1-45

1 Functions — Alphabetical List

Display the modulated signal constellation using the scatterplot function.

scatterplot(mappedData);

Scatter plot

087

06

04r

027

Quadrature
L]

-1 0.5 1] 0.5 1
In-Phase

BPSK and QBPSK Mapping for VHT-SIG-A field

Perform BPSK and QBPSK demapping for different OFDM symbols for the VHT-SIG-A field
by using a soft demodulation. The mapping is defined in IEEE® 802.11ac™-2013 Section
22.3.8.3.3 for the VHT-SIG-A field.

Create the sequence of data bits. Place the two OFDM symbols in columns.

1-46

wlanConstellationMap

bits = randi([0 1],48,2,'int8");

Perform constellation mapping on the data bits. Specify the size of constellation rotation
phase as the number of columns in the input sequence. The first column is mapped with
a BPSK modulation. The second column is modulated with a QBPSK modulation.

numBPSCS = 1;
phase = [0 pi/2];
mappedData = wlanConstellationMap(bits, numBPSCS, phase);

Display the modulated signal constellation by using the scatterplot function. The first
plot shows the data after the BPSK modulation, and the second plot shows the QBPSK-
modulated symbols.

scatterplot(mappedData(:,1))

1-47

1 Functions — Alphabetical List

Scatter plot

0471

Quadrature
]

-1 0.5 1] 0.5
In-Phase

scatterplot(mappedData(:,2))

1-48

wlanConstellationMap

Scatter plot
.llI = L]
0.8
0.6
0.4 1
L o2t
=
£
5 0
4]
=
O 02
-0.4
06T
-0.8
_'I [i i T i i
-1 0.5 0 0.5 1
In-Phase

Input Arguments

bits — Input sequence
vector | matrix | multidimensional array

Input sequence of bits to map into symbols, specified as a binary vector, matrix, or
multidimensional array.

Data Types: double | int8

numBPSCS — Number of coded bits per subcarrier per spatial stream
1121416810

1-49

1 Functions — Alphabetical List

Number of coded bits per subcarrier per spatial stream, specified as log2(M), where M is
the modulation order. Therefore, numBPSCS must equal:

* 1 for a BPSK modulation

» 2 for a QPSK modulation

e 4 for a 16QAM modulation

* 6 for a 64QAM modulation

o 8 fora 256QAM modulation

* 10 for a 1024QAM modulation

Example: 4
Data Types: double

phase — Constellation rotation
scalar | vector | multidimensional array

Constellation rotation in radians, specified as a scalar, vector, or multidimensional array.
The size of phase must be compatible with the size of the input bits. phase and bits
have compatible sizes if, for each corresponding dimension, the dimension sizes are either
equal or one of them is 1. When one of the dimensions of bits is equal to 1, and the
corresponding dimension of phase is larger than 1, then the output dimensions have the
same size as the dimensions of phase.

Example: pi*(0:size(bits,1)/numBPSCS-1)."'/2;
Data Types: double

Output Arguments

y — Mapped symbols
vector | matrix | multidimensional array

Mapped symbols, returned as a complex vector, matrix, or multidimensional array. y has
the same size as bits, except for the number of rows, which is equal to the number of
rows of bits divided by numBPSCS.

wlanConstellationMap

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

wlanConstellationDemap

Introduced in R2017b

1-51

1 Functions — Alphabetical List

1-52

wlanDMGConfig

Create DMG format configuration object

Syntax
cfgDMG = wlanDMGConfig
cfgDMG = wlanDMGConfig(Name,Value)

Description

cfgDMG = wlanDMGConfig creates a configuration object that initializes parameters for
an IEEE 802.11 directional multi-gigabit (DMG) format “PPDU” on page 1-60.

cfgDMG = wlanDMGConfig(Name,Value) creates a DMG format configuration object
that overrides the default settings using one or more Name, Value pair arguments.

At runtime, the calling function validates object settings for properties relevant to the
operation of the function.

Examples

Create DMG Configuration Object with Default Settings
cfgDMG = wlanDMGConfig

cfgbDMG =
wlanDMGConfig with properties:

MCS: '0'
TrainingLength: 0
PSDULength: 1000
ScramblerInitialization: 2
Turnaround: 0

wlanDMGConfig

Create DMG Configuration Object and Modify Default Settings

Create a DMG configuration object and use Name, Value pairs to override default
settings.

dtpgrouppairs = (randperm(42)-1)"';
cfgDMG = wlanDMGConfig('MCS',13, 'TonePairingType', 'Dynamic’,
'DTPGroupPairIndex',dtpgrouppairs)

cfgbDMG =
wlanDMGConfig with properties:

MCS: 13
TrainingLength: 0
TonePairingType: 'Dynamic'
DTPGroupPairIndex: [42x1 double]
DTPIndicator: 0
PSDULength: 1000
ScramblerInitialization:
AggregatedMPDU:
LastRSSI:
Turnaround:

ODOON

Create DMG Configuration Object and Return DMG PHY Type

Create DMG configuration objects and change the default property settings by using dot
notation. Use the phyType object function to access the DMG PHY modulation type.

Create a DMG configuration object and return the DMG PHY modulation type. By default,
the configuration object creates properties to model the DMG control PHY.

dmg = wlanDMGConfig;
phyType (dmg)

ans =
"Control!

Model the SC PHY by modifying the defaults by using the dot notation to specify an MCS
of 5.

1-53

1 Functions — Alphabetical List

dmg.MCS
phyType (

(o]
«Q U
-~

m

ans =
ISCI

Create DMG Configuration Object with Extended MCS

Create DMG configuration objects and change the default MCS setting by using dot
notation.

Create a DMG configuration object and return the DMG PHY modulation type. By default,
the configuration object creates properties to model the DMG control PHY.

dmg = wlanDMGConfig;
phyType (dmg)

ans =
'"Control!

Model the SC PHY by modifying the defaults by using the dot notation to specify an
extended MCS of 9.1.

dmg.MCS = '9.1";
phyType(dmg)

ans =
ISCI

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

wlanDMGConfig

Example: '"MCS', '13"', 'TraininglLength', 4 specifies a modulation and coding
scheme of 13, which indicates OFDM PHY modulation and code rate of 1/2. Also, a PPDU
with four training fields is specified for the DMG format packet.

MCS — Modulation and coding scheme index
0 (default) | integer from 0 to 24 | '9.1"

| '12.6"

|'12.1'|'12.2' | '12.3" | '12.4' | '12.5"

Modulation and coding scheme index, specified as an integer from 0 to 24 or one of the
extended MCS indices: '9.1"', '12.1"', '12.2"', '12.3", '12.4','12.5" or '12.6".
An extended (non-integer) MCS index can only be specified as a character vector or string
scalar. An integer MCS index can be specified as a character vector, string scalar, or
integer. The MCS index indicates the modulation and coding scheme used in transmitting

the current packet.

* Modulation and coding scheme for control PHY

MCS Index Modulation Coding Rate Comment
Code rate and data
o |
shortening.
* Modulation and coding schemes for single-carrier modulation
MCS Index Modulation | Coding Rate Ncgps Repetition
1 172 2
2 1/2
3 /2 BPSK 5/8 1
4 3/4
5 13/16
6 172 1
7 5/8
8 /2 QPSK 3/4 2
9 13/16
9.1 7/8

1-55

1 Functions — Alphabetical List

1-56

MCS Index Modulation | Coding Rate Ncgps Repetition
10 1/2
11 5/8
12 /2 16QAM 3/4 4
12.1 3/4
12.2 7/8
12.3 5/8
12.4 3/4
64QAM 6
12.5 13/16
12.6 7/8
Ncgps is the number of coded bits per symbol.
* Modulation and coding schemes for OFDM modulation
MCS Index | Modulation | Coding Rate Ngpsc Ncgps Npgps
13 1/2 168
SQPSK 1 336
14 5/8 210
15 1/2 336
16 QPSK 5/8 2 672 420
17 3/4 504
18 1/2 672
19 5/8 840
16QAM 4 1344
20 3/4 1008
21 13/16 1092
22 5/8 1260
23 64QAM 3/4 6 2016 1512
24 13/16 1638

Ngpsc is the number of coded bits per single carrier.

Ncgps is the number of coded bits per symbol.

Npgps is the number of data bits per symbol.

wlanDMGConfig

Data Types: double | char | string

TrainingLength — Number of training fields
0 (default) | integer from 0 to 64

Number of training fields, specified as an integer from 0 to 64. TrainingLength must be
a multiple of four.

Data Types: double

PacketType — Packet training field type
'"TRN-R' (default) | 'TRN-T'

Packet training field type, specified as ' TRN-R' or 'TRN-T'. This property applies when
TrainingLength > 0.

'"TRN-R' indicates that the packet includes or requests receive-training subfields and
"TRN-T' indicates that the packet includes transmit-training subfields.

Data Types: char | string

BeamTrackingRequest — Request beam tracking
false (default) | true

Request beam tracking, specified as a logical. Setting BeamTrackingRequest to true
indicates that beam tracking is requested. This property applies when
TrainingLength > 0.

Data Types: logical

TonePairingType — Tone pairing type
‘Static’' (default) | 'Dynamic'’

Tone pairing type, specified as 'Static' or 'Dynamic'. This property applies when MCS
is from 13 to 17. Specifically, TonePairingType applies when using OFDM and either
SQPSK or QPSK modulation.

Data Types: char | string

DTPGroupPairIndex — DTP group pair index
(0:1:41) (default) | 42-by-1 integer vector

DTP group pair index, specified as a 42-by-1 integer vector for each pair. Element values
must be from 0 to 41, with no duplicates. This property applies when MCS is from 13 to 17
and when TonePairingTypeis 'Dynamic’.

1-57

1 Functions — Alphabetical List

1-58

Data Types: double

DTPIndicator — DTP update indicator
false (default) | true

DTP update indicator, specified as a logical. Toggle DTPIndicator between packets to
indicate that the dynamic tone pair mapping has been updated. This property applies
when MCS is from 13 to 17 and when TonePairingType is 'Dynamic'.

Data Types: logical

PSDULength — Number of bytes carried in the user payload

1000 (default) | integer from 1 to 262,143

Number of bytes carried in the user payload, specified as an integer from 1 to 262,143.
Data Types: double

ScramblerInitialization — Initial scrambler state
2 (default) | integer from 1 to 127

Initial scrambler state of the data scrambler for each packet generated, specified as an
integer depending on the value of MCS:

» IfMCS is 0, the initial scrambler state is limited to values from 1 to 15, corresponding
to a 4-by-1 column vector..

o+ IfMCSis'9.1','12.1','12.2"','12.3"','12.4"','12.5" or '12.6"', the valid
range of the initial scrambler is from 0 to 31, corresponding to a 5-by-1 column vector.

* For the remaining MCS values, the valid range is from 1 to 127, corresponding to a 7-
by-1 column vector.

The default value of 2 is the example state given in IEEE Std 802.11-2012, Amendment 3,
Section L.5.2.

Data Types: double | int8

AggregatedMPDU — MPDU aggregation indicator
false (default) | true

MPDU aggregation indicator, specified as a logical. Setting AggregatedMPDU to true
indicates that the current packet uses A-MPDU aggregation.

Data Types: logical

wlanDMGConfig

LastRSSI — Received power level of the last packet
0 (default) | integer from 0 to 15

Received power level of the last packet, specified as an integer from 0 to 15.

When transmitting a response frame immediately following a short interframe space
(SIFS) period, a DMG STA sets the LastRSSI as specified in IEEE 802.11ad™-2012,
Section 9.3.2.3.3, to map to the TXVECTOR parameter LAST RSSI of the response frame
to the power that was measured on the received packet, as reported in the RCPI field of
the frame that elicited the response frame. The encoding of the value for TXVECTOR is as
follows:

* Power values equal to or above -42 dBm are represented as the value 15.

» Power values between -68 dBm and -42 dBm are represented as round((power - (-71
dBm))/2).

* Power values less than or equal to -68 dBm are represented as the value of 1.

* For all other cases, the DMG STA shall set the TXVECTOR parameter LAST RSSI of
the transmitted frame to 0.

The LAST RSSI parameter in RXVECTOR maps to LastRSSI and indicates the value of

the LAST RSSI field from the PCLP header of the received packet. The encoding of the

value for RXVECTOR is as follows:

» Avalue of 15 represents power greater than or equal to -42 dBm.

* Values from 2 to 14 represent power levels (-71+valuex2) dBm.

* Avalue of 1 represents power less than or equal to -68 dBm.

* Avalue of 0 indicates that the previous packet was not received during the SIFS
period before the current transmission.

For more information, see IEEE 802.11ad-2012, Section 21.2.
Data Types: double

Turnaround — Turnaround indication
false (default) | true

Turnaround indication, specified as a logical. Setting Turnaround to true indicates that
the STA is required to listen for an incoming PPDU immediately following the
transmission of the PPDU. For more information, see IEEE 802.11ad-2012, Section
9.3.2.3.3.

1-59

1 Functions — Alphabetical List

1-60

Data Types: logical

Output Arguments

cfgDMG — DMG PPDU configuration
wlanDMGConfig object

DMG “PPDU” on page 1-60 configuration, returned as a wlanDMGConfig object. The
properties of cfgDMG are described in wlanDMGConfig.

Definitions

PPDU

The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

References

[1] IEEE Std 802.11ad™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

wlanDMGConfig

See Also

Functions

wlanDMGConfig.phyType | wlanHTConfig | wlanNonHTConfig | wlanS1GConfig |
wlanVHTConfig | wlanWaveformGenerator

Apps
Wireless Waveform Generator

Topics
“Packet Size and Duration Dependencies”

Introduced in R2017a

1-61

1 Functions — Alphabetical List

wlanDMGConfig.phyType

Return DMG PHY modulation type

Syntax

type = phyType(cfg)

Description

type = phyType(cfg) returns the DMG physical layer (PHY) modulation type, based
on the configuration of the DMG object.

Input Arguments

cfg — DMG PPDU configuration
wlanDMGConfig object

DMG PPDU configuration, specified as a wlanDMGConfig object.

Output Arguments

type — DMG PHY modulation type
Control | SC | OFDM

DMG PHY modulation type, specified as 'Control’, 'SC', or 'OFDM'.

Examples

1-62

wlanDMGConfig.phyType

Create DMG Configuration Object and Return DMG PHY Type

Create DMG configuration objects and change the default property settings by using dot
notation. Use the phyType object function to access the DMG PHY modulation type.

Create a DMG configuration object and return the DMG PHY modulation type. By default,
the configuration object creates properties to model the DMG control PHY.

dmg = wlanDMGConfig;
phyType (dmg)

ans =
"Control!

Model the SC PHY by modifying the defaults by using the dot notation to specify an MCS
of 5.

dmg.MCS = 5;
phyType (dmg)

ans =
ISCI

See Also

Functions
wlanDMGConfig

Introduced in R2017b

1-63

1 Functions — Alphabetical List

1-64

wlanDMGDataBitRecover

Recover data bits from DMG data field

Syntax

DataBits
DataBits
DataBits

wlanDMGDataBitRecover(rxDataSig,noiseVarEst, cfg)
wlanDMGDataBitRecover(rxDataSig,noiseVarEst,csi,cfg)
wlanDMGDataBitRecover (,Name, Value)

Description

DataBits = wlanDMGDataBitRecover(rxDataSig,noiseVarEst,cfg) recovers
the data bits given the data field from a DMG transmission (OFDM, single-carrier, or
control PHY), the noise variance estimate, and the DMG configuration object.

DataBits = wlanDMGDataBitRecover(rxDataSig,noiseVarEst,csi,cfg) uses
the channel state information specified in csi to enhance the demapping of OFDM
subcarriers.

DataBits = wlanDMGDataBitRecover(,Name,Value) specifies additional

options in name-value pair arguments, using the inputs from preceding syntaxes. When a
name-value pair is not specified, its default value is used.

Examples

Recover Data Field from DMG SC PHY
Recover data information bits from the DMG data field of single-carrier (SC) PHY.
Transmitter

Create the DMG configuration object with a modulation and coding scheme (MCS) for the
SC PHY.

wlanDMGDataBitRecover

cfgDMG = wlanDMGConfig('MCS',10);

Create the input sequence of data bits, specifying it as a column vector with
cfgDMG. PSDULength*8 elements. Generate the DMG transmission waveform.

txBits = randi([0 1],cfgDMG.PSDULength*8,1, 'int8"');
tx = wlanWaveformGenerator(txBits,cfgDMG);

AWGN Channel

Set an SNR of 10 dB, calculate the noise power (noise variance), and add AWGN to the
transmission waveform by using the awgn function.

SNR = 10;
nVar = 10"~ (-SNR/10);
rx = awgn(tx,SNR);

Receiver

Extract the data field by using the wlanFieldIndices function to generate the PPDU
field indices.

ind = wlanFieldIndices(cfgDMG);
rxData = rx(ind.DMGData(1):ind.DMGData(2));

Reshape the received data waveform into blocks. Set the data block size to 512 and the
guard interval length to 64. Remove the last guard interval from the received data
waveform. The resulting data waveform is a 512-by-Nb1lks matrix, where Nblks is the
number of DMG data blocks.

blkSize = 512;
Ngi = 64;

rxData
rxData

rxData(l:end-Ngi);
reshape(rxData,blkSize,[]);

Remove the guard interval from each block. The resulting signal is a 448-by-Nb1lks
matrix, as expected for a time-domain DMG data field signal for SC PHY.

rxSym = rxData(Ngi+l:end,:);
size(rxSym)

ans = 1x2

448 9

1-65

1 Functions — Alphabetical List

1-66

Recover the PSDU from the DMG data field.

rxBits = wlanDMGDataBitRecover(rxSym,nVar,cfgDMG) ;
Compare it against the original information bits.
disp(isequal (txBits, rxBits));

1

Recover Data Field from DMG OFDM PHY
Recover data information bits of the DMG data field of the OFDM PHY.
Transmitter

Create the DMG configuration object with a modulation and coding scheme (MCS) for the
OFDM PHY.

cfgDMG = wlanDMGConfig('MCS"',14);

Create the input sequence of data bits, specifying it as a column vector with
cfgDMG. PSDULength*8 elements. Generate the DMG transmission waveform.

txBits = randi([0 1],cfgDMG.PSDULength*8,1, 'int8"');
tx = wlanWaveformGenerator(txBits, cfgDMG);

Channel
Transmit the signal through a channel with no noise (zero noise variance).

rx = tx;
nVar = 0;

Receiver

Extract the data field, using the wlanFieldIndices function to generate the PPDU field
indices.

ind = wlanFieldIndices(cfgDMG);
rxData = rx(ind.DMGData(1l):ind.DMGData(2));

Set the FFT length to 512 and the cyclic prefix length to 128 for the OFDM demodulation.

wlanDMGDataBitRecover

Nfft = 512;
Ncp = 128;

Perform the OFDM demodulation. Reshape the received waveform to have the OFDM
symbols per column and remove cyclic prefix. Then, scale the sequence by the active tone
352 and extract the frequency domain symbols.

ofdmSym = reshape(rxData,Nfft+Ncp,[]);
dftSym ofdmSym(Ncp+1l:end, :);

dftSym = dftSym/(Nfft/sqrt(352));
freqSym = fftshift(fft(dftSym,[1,1),1);

Extract data-carrying subcarriers and discard the pilots. Set the highest subcarrier index

to 177.

pilotSCIndex = [-150; -130; -110; -90; -70; -50; -30; -10; 10; 30; 50; 70; 90; 110;
noDataSCIndex = [pilotSCIndex; [-1; O; 111;

Nsr = 177;

dataSCIndex = setdiff((-Nsr:Nsr).',sort(noDataSCIndex));

rxSym = freqSym(dataSCIndex+(Nfft/2+1),:);

Recover the PSDU from the DMG data field. Assume a CSI estimation of all ones.

csi = ones(length(dataSCIndex),1);
rxBits = wlanDMGDataBitRecover(rxSym,nVar,csi,cfgDMG);

Compare it against the original information bits.
disp(isequal(txBits,rxBits));

1
Recover Data Field from DMG Control PHY
Recover data information bits from the DMG data field of the control PHY.
Transmitter

Create the DMG configuration object with a modulation and coding scheme (MCS) for the
control PHY.

cfgDMG = wlanDMGConfig('MCS',0);

Create the input sequence of data bits, specifying it as a column vector with
cfgDMG. PSDULength*8 elements. Generate the DMG transmission waveform.

1-67

131

1 Functions — Alphabetical List

txBits = randi([0 1],cfgDMG.PSDULength*8,1, 'int8");
tx = wlanWaveformGenerator(txBits,cfgDMG);

Channel

Transmit the signal through a channel with no noise (zero noise variance).

rx = tx;
nVar = 0;

Receiver
Extract the header and the data field by using the wlanFieldIndices function.

ind = wlanFieldIndices(cfgDMG);
rxSym = rx(ind.DMGHeader(1):ind.DMGData(2));

De-rotate the received signal by pi/2 and despread it with a spreading factor of 32. Use
the wlanGolaySequence function to generate the Golay sequence.

rxSym = rxSym.*exp(-1i*pi/2*(0:size(rxSym,1)-1)."');

SF = 32;

Ga = wlanGolaySequence(SF);

rxSymDespread = (reshape(rxSym,SF,length(rxSym)/SF)'*Ga)/SF;
Recover the PSDU from the DMG data field.

rxBits = wlanDMGDataBitRecover(rxSymDespread,nVar, cfgDMG) ;
Compare it against the original information bits.

disp(isequal(txBits,rxBits));

1

Input Arguments

rxDataSig — Received DMG data field signal
real or complex matrix

Received DMG data signal, specified as a real or complex matrix. The contents and size of
rxDataSig depend on the physical layer (PHY):

1-68

wlanDMGDataBitRecover

* Single-carrier PHY — rxDataSig is the time-domain DMG data field signal, specified
as a 448-by-Ng; ks matrix of real or complex values. The value 448 is the number of
symbols in a DMG data symbol and Njy; ks is the number of DMG data blocks.

* OFDM PHY — rxDataSig is the demodulated DMG data field OFDM symbols,
specified as a 336-by-Ngyy matrix of real or complex values. The value 336 is the
number of data subcarriers in the DMG data field and Ngyy is the number of OFDM
symbols.

* Control PHY — rxDataSig is the time-domain signal containing the header and data

fields, specified as an Np-by-1 column vector of real or complex values, where Ny is the
number of despread symbols.

Data Types: double
Complex Number Support: Yes

noiseVarEst — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar.

Data Types: double

cfg — DMG PPDU configuration
wlanDMGConfig object

DMG PPDU configuration, specified as a wlanDMGConfig object. The
wlanDMGDataBitRecover function uses the following object properties:

MCS — Modulation and coding scheme index
0 (default) | integer from0to24 | '9.1"'|'12.1"|'12.2"'|'12.3"'|'12.4"' | '12.5"
| '12.6"

Modulation and coding scheme index, specified as an integer from 0 to 24 or one of the
extended MCS indices: '9.1', '12.1', '12.2"', '12.3", '12.4','12.5" or '12.6".
An extended (non-integer) MCS index can only be specified as a character vector or string
scalar. An integer MCS index can be specified as a character vector, string scalar, or
integer. The MCS index indicates the modulation and coding scheme used in transmitting
the current packet.

* Modulation and coding scheme for control PHY

1-69

1 Functions — Alphabetical List

MCS Index Modulation Coding Rate Comment
Code rate and data
: I b
shortening.
Modulation and coding schemes for single-carrier modulation
MCS Index Modulation | Coding Rate Ncgps Repetition

1 1/2 2
2 1/2
3 /2 BPSK 5/8 1
4 3/4
5 13/16
6 1/2
7 5/8
8 /2 QPSK 3/4 2
9 13/16

9.1 7/8 1

10 1/2

11 5/8

12 /2 16QAM 3/4 4

12.1 3/4

12.2 7/8

12.3 5/8

12.4 3/4

64QAM 6
12.5 13/16
12.6 7/8
Ncgps is the number of coded bits per symbol.

Modulation and coding schemes for OFDM modulation

wlanDMGDataBitRecover

MCS Index | Modulation | Coding Rate Ngpsc Ncgps Npgps
13 1/2 168
SQPSK 1 336
14 5/8 210
15 1/2 336
16 QPSK 5/8 2 672 420
17 3/4 504
18 1/2 672
19 5/8 840
16QAM 4 1344
20 3/4 1008
21 13/16 1092
22 5/8 1260
23 64QAM 3/4 6 2016 1512
24 13/16 1638

Ngpsc is the number of coded bits per single carrier.

Ncgps is the number of coded bits per symbol.

Npgps is the number of data bits per symbol.

Data Types: double | char | string

TrainingLength — Number of training fields

0 (default) | integer from 0 to 64

Number of training fields, specified as an integer from 0 to 64. TraininglLength must be
a multiple of four.

Data Types: double

PacketType — Packet training field type
'"TRN-R' (default) | 'TRN-T'

Packet training field type, specified as ' TRN-R' or 'TRN-T'. This property applies when
TrainingLength > 0.

'"TRN-R' indicates that the packet includes or requests receive-training subfields and
'"TRN-T' indicates that the packet includes transmit-training subfields.

1-71

1 Functions — Alphabetical List

1-72

Data Types: char | string

BeamTrackingRequest — Request beam tracking
false (default) | true

Request beam tracking, specified as a logical. Setting BeamTrackingRequest to true
indicates that beam tracking is requested. This property applies when
TrainingLength > 0.

Data Types: logical

TonePairingType — Tone pairing type
'Static’' (default) | 'Dynamic'

Tone pairing type, specified as 'Static' or 'Dynamic'. This property applies when MCS
is from 13 to 17. Specifically, TonePairingType applies when using OFDM and either
SQPSK or QPSK modulation.

Data Types: char | string

DTPGroupPairIndex — DTP group pair index
(0:1:41) (default) | 42-by-1 integer vector

DTP group pair index, specified as a 42-by-1 integer vector for each pair. Element values
must be from 0 to 41, with no duplicates. This property applies when MCS is from 13 to 17
and when TonePairingTypeis 'Dynamic’.

Data Types: double

DTPIndicator — DTP update indicator
false (default) | true

DTP update indicator, specified as a logical. Toggle DTPIndicator between packets to
indicate that the dynamic tone pair mapping has been updated. This property applies
when MCS is from 13 to 17 and when TonePairingTypeis 'Dynamic'.

Data Types: logical

PSDULength — Number of bytes carried in the user payload
1000 (default) | integer from 1 to 262,143

Number of bytes carried in the user payload, specified as an integer from 1 to 262,143.

Data Types: double

wlanDMGDataBitRecover

ScramblerInitialization — Initial scrambler state
2 (default) | integer from 1 to 127

Initial scrambler state of the data scrambler for each packet generated, specified as an
integer depending on the value of MCS:

» IfMCS is 0, the initial scrambler state is limited to values from 1 to 15, corresponding
to a 4-by-1 column vector..

+ IfMCSis'9.1','12.1','12.2",'12.3"','12.4"','12.5" or '12.6"', the valid
range of the initial scrambler is from 0 to 31, corresponding to a 5-by-1 column vector.

* For the remaining MCS values, the valid range is from 1 to 127, corresponding to a 7-
by-1 column vector.

The default value of 2 is the example state given in IEEE Std 802.11-2012, Amendment 3,

Section L.5.2.

Data Types: double | int8

AggregatedMPDU — MPDU aggregation indicator
false (default) | true

MPDU aggregation indicator, specified as a logical. Setting AggregatedMPDU to true
indicates that the current packet uses A-MPDU aggregation.

Data Types: Llogical

LastRSSI — Received power level of the last packet
0 (default) | integer from 0 to 15

Received power level of the last packet, specified as an integer from 0 to 15.

When transmitting a response frame immediately following a short interframe space
(SIFS) period, a DMG STA sets the LastRSSI as specified in IEEE 802.11ad-2012,
Section 9.3.2.3.3, to map to the TXVECTOR parameter LAST RSSI of the response frame
to the power that was measured on the received packet, as reported in the RCPI field of
the frame that elicited the response frame. The encoding of the value for TXVECTOR is as
follows:

» Power values equal to or above -42 dBm are represented as the value 15.

» Power values between -68 dBm and -42 dBm are represented as round((power - (-71
dBm))/2).

1-73

1 Functions — Alphabetical List

» Power values less than or equal to -68 dBm are represented as the value of 1.

+ For all other cases, the DMG STA shall set the TXVECTOR parameter LAST RSSI of
the transmitted frame to 0.

The LAST RSSI parameter in RXVECTOR maps to LastRSST and indicates the value of

the LAST RSSI field from the PCLP header of the received packet. The encoding of the

value for RXVECTOR is as follows:

» Avalue of 15 represents power greater than or equal to -42 dBm.

* Values from 2 to 14 represent power levels (-71+valuex2) dBm.

» Avalue of 1 represents power less than or equal to -68 dBm.

* Avalue of 0 indicates that the previous packet was not received during the SIFS
period before the current transmission.

For more information, see IEEE 802.11ad-2012, Section 21.2.
Data Types: double

Turnaround — Turnaround indication
false (default) | true

Turnaround indication, specified as a logical. Setting Turnaround to true indicates that
the STA is required to listen for an incoming PPDU immediately following the
transmission of the PPDU. For more information, see IEEE 802.11ad-2012, Section
9.3.2.3.3.

Data Types: logical

csi — Channel State Information
real column vector

Channel state information, specified as a 336-by-1 real column vector. The value 336
specifies the number of data subcarriers in the DMG data field. csi is required only for
OFDM PHY.

Data Types: double
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

wlanDMGDataBitRecover

You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: 'MaximumLDPCIterationCount','12', 'EarlyTermination', 'false'
specifies a maximum of 12 decoding iterations for the LDPC and disables early
termination of LDPC decoding so that it completes the 12 iterations.

MaximumLDPCIterationCount — Maximum number of decoding iterations in
LDPC
12 (default) | positive scalar integer

Maximum number of decoding iterations in LDPC, specified as a positive scalar integer.
This parameter is applicable when channel coding is set to LDPC for the user of interest.

For information on channel coding options, see the 802.11 format configuration object of
interest.

Data Types: double

EarlyTermination — Enable early termination of LDPC decoding
false (default) | true

Enable early termination of LDPC decoding, specified as a logical. This parameter is
applicable when channel coding is set to LDPC for the user of interest.

* When set to false, LDPC decoding completes the number of iterations specified by
MaximumLDPCIterationCount, regardless of parity check status.

* When set to true, LDPC decoding terminates when all parity-checks are satisfied.

For information on channel coding options, see the 802.11 format configuration object of
interest.

Output Arguments

DataBits — Recovered information bits in the DMG data field
110 | column vector

Recovered information bits from the DMG data field, returned as a column vector of
length 8 x cfgDMG.PSDULength. See wlanDMGConfig for PSDULength details.

Data Types: int8

1-75

1 Functions — Alphabetical List

Definitions

DMG Data Field

The DMG format supports three physical layer (PHY) modulation schemes: control, single
carrier, and OFDM. The data field is variable in length. It serves the same function for the
three PHYs and carries the user data payload.

1-76

wlanDMGDataBitRecover

Control PHY

Data

Preamble

DMG Format PPDU

Single Carrier (SC) PHY Data
Block Block | Block " Block
cl DATA
448 symbols
512 symbols
OFDM PHY Data
Sym Sym | Sym R Sym
cP DATA
128 samples 512 samples
640 samples

Training Subfields

For SC PHY, each block in the data field is 512-symbols long and with a guard interval
(GI) of 64 symbols with the Golay Sequence. For OFDM, each OFDM symbol in the data
field are 640 samples long and with a cyclic prefix (CP) of 128 samples to prevent

intersymbol interference.

1-77

1 Functions — Alphabetical List

IEEE 802.11ad-2012 specifies the common aspects of the DMG PPDU packet structure in
Section 21.3. The PHY modulation-specific aspects of the data field structure are specified
in these sections:

* The DMG control PHY packet structure is specified in Section 21.4.
* The DMG OFDM PHY packet structure is specified in Section 21.5.
* The DMG SC PHY packet structure is specified in Section 21.6.

References

[1] IEEE Std 802.11ad™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanDMGConfig | wlanDMGHeaderBitRecover

Introduced in R2017b

1-78

wlanDMGHeaderBitRecover

wlanDMGHeaderBitRecover

Recover header bits from DMG header field

Syntax

[headerBits, failHCS] = wlanDMGHeaderBitRecover(rxHeader,noiseVarEst,
EzgéerBits = wlanDMGHeaderBitRecover(rxHeader,noiseVarEst, csi,cfg)
headerBits = wlanDMGHeaderBitRecover(_ ,Name,Value)
Description

[headerBits, failHCS] = wlanDMGHeaderBitRecover(rxHeader,noiseVarEst,

cfg) recovers the header information bits and tests the header check sequence (HCS)
given the header field from a DMG transmission (OFDM, single-carrier, or control PHY),
the noise variance estimate, and the DMG configuration object.

headerBits = wlanDMGHeaderBitRecover(rxHeader,noiseVarEst,csi,cfg)
uses the channel state information specified in csi to enhance the demapping of OFDM
subcarriers.

headerBits = wlanDMGHeaderBitRecover(,Name,Value) specifies additional

options using name-value pair arguments, using the inputs from preceding syntaxes.
When a name-value pair is not specified, its default value is used.

Examples

Recover Header Field from DMG SC PHY

Recover header bits from the DMG header field of the single-carrier (SC) PHY.

1-79

1 Functions — Alphabetical List

1-80

Transmitter

Create the DMG configuration object with a modulation and coding scheme (MCS) for the
SC PHY.

cfgDMG = wlanDMGConfig('MCS',10);

Create the input sequence of bits, specifying it as a column vector with
cfgDMG. PSDULength*8 elements. Generate the DMG transmission waveform.

txBits = randi([0 1],cfgDMG.PSDULength*8,1,'int8"');
tx = wlanWaveformGenerator(txBits,cfgDMG);

AWGN Channel

Set an SNR of 10 dB, calculate the noise power (noise variance), and add AWGN to the
transmission waveform by using the awgn function.

SNR = 10;
nVar = 10~(-SNR/10);
rx = awgn(tx,SNR);

Receiver

Extract the header field by using the wlanFieldIndices function.

ind = wlanFieldIndices(cfgDMG);
rxHeader = rx(ind.DMGHeader(1l):ind.DMGHeader(2));

Reshape the received waveform into blocks. Set the data block size to 512 and the guard
interval length to 64. Remove the last guard interval from the received header waveform.
The resulting signal is a 448-by-2 matrix.

blkSize = 512;

rxHeader = reshape(rxHeader,blkSize,[]);
Ngi = 64;

rxSym = rxHeader(Ngi+l:end,:);
size(rxSym)

ans = 1x2

448 2

Recover header bits from DMG header field.

wlanDMGHeaderBitRecover

[rxBits,failHCS] = wlanDMGHeaderBitRecover(rxSym,nVar,cfgDMG);
Display the HCS check on the recovered header bits.
disp(failHCS);

0

Recover Header Field from DMG OFDM PHY
Recover header information bits from the DMG header field of the OFDM PHY.

Transmitter

Create the DMG configuration object with a modulation and coding scheme (MCS) for the
OFDM PHY.

cfgDMG = wlanDMGConfig('MCS',14);

Create the input sequence of data bits, specifying it as a column vector with
cfgDMG. PSDULength*8 elements. Generate the DMG transmission waveform.

txBits = randi([0® 1],cfgDMG.PSDULength*8,1,'int8");
tx = wlanWaveformGenerator(txBits,cfgDMG);

Channel
Transmit the signal through a channel with no noise (zero noise variance).

rx = tx;
nVar = 0;

Receiver
Extract data field using the wlanFieldIndices function.

ind = wlanFieldIndices (cfgDMG);
rxHeader = rx(ind.DMGHeader(1):ind.DMGHeader(2));

Set the FFT length to 512 and the cyclic prefix length to 128 for the OFDM demodulation.

Nfft = 512;
Ncp = 128;

1-81

1 Functions — Alphabetical List

1-82

Perform the OFDM demodulation. Remove cyclic prefix, scale the sequence by the active
tone 352, and extract the frequency domain symbols.

dftSym = rxHeader(Ncp+l:end,:);
dftSym = dftSym/(Nfft/sqrt(352));
freqSym = fftshift(fft(dftSym,[1,1),1);

Extract data-carrying subcarriers and discard the pilots. Set the highest subcarrier index
to 177.

pilotSCIndex = [-150; -130; -110; -90; -70; -50; -30; -10; 10; 30; 50; 70; 90; 110;
noDataSCIndex = [pilotSCIndex; [-1; O; 111;
Nsr = 177;

dataSCIndex = setdiff((-Nsr:Nsr).',6sort(noDataSCIndex));
rxSym = freqSym(dataSCIndex+(Nfft/2+1),:);

Recover the header bits from the DMG header field. Assume a CSI estimation of all ones.

csi = ones(length(dataSCIndex),1);
[rxBits,failHCS] = wlanDMGHeaderBitRecover(rxSym,nVar,csi,cfgDMG);

Display the HCS check on the recovered header bits.
disp(failHCS);
0

Recover Header Field from DMG Control PHY

Recover header information bits of the DMG header field from the control PHY.

Transmitter

Create the DMG configuration object with a modulation and coding scheme (MCS) for the
control PHY.

cfgDMG = wlanDMGConfig('MCS',0);

Create the input sequence of data bits, specifying it as a column vector with
cfgDMG. PSDULength*8 elements. Generate the DMG transmission waveform.

txBits = randi([0 1],cfgDMG.PSDULength*8,1, 'int8");
tx = wlanWaveformGenerator(txBits,cfgDMG) ;

131

wlanDMGHeaderBitRecover

Channel
Transmit the signal through a channel with no noise (zero noise variance).

rx = tx;
nVar = 0;

Receiver
Extract the header field by using the wlanFieldIndices function.

ind = wlanFieldIndices(cfgDMG);
rxHeader = rx(ind.DMGHeader(1l):ind.DMGHeader(2));

De-rotate the received signal by pi/2 and despread it with a spreading factor of 32. Use
the wlanGolaySequence function to generate the Golay sequence.

rxSym = rxHeader.*exp(-1i*pi/2*(0:size(rxHeader,1)-1).");
SF = 32;

Ga = wlanGolaySequence(SF);

rxDespread = reshape(rxSym,SF,length(rxSym)/SF)'*Ga/SF;
Recover the header bits from the DMG header field.

[rxBits,failHCS] = wlanDMGHeaderBitRecover(rxDespread,nVar,cfgDMG);
Display the HCS check on the recovered header bits.
disp(failHCS);

0

Input Arguments

rxHeader — Received DMG header field signal
matrix

Received DMG header field signal, specified as a real or complex matrix. The contents
and size of rxHeader depends on the physical layer (PHY):

» Single-Carrier PHY — rxHeader is the time-domain DMG header field signal,
specified as a 448-by-Ng; xs matrix of real or complex values. The value 448 is the
number of symbols in a DMG header symbol and Ng; s is the number of DMG header
blocks.

1-83

1 Functions — Alphabetical List

1-84

* OFDM PHY — rxHeader is the frequency-domain signal, specified as a 336-by-1
column vector of real or complex values. The value 336 is the number of data
subcarriers in the DMG header field.

* Control PHY — rxHeader is the time-domain signal containing the header field,

specified as an Ng-by-1 column vector of real or complex values. N is the number of
despread symbols.

Data Types: double
Complex Number Support: Yes

noiseVarEst — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar.

Data Types: double

cfg — DMG PPDU configuration
wlanDMGConfig object

DMG PPDU configuration, specified as a wlanDMGConfig object. The
wlanDMGDataBitRecover function uses the following object properties:

MCS — Modulation and coding scheme index
0 (default) | integer fromOto24 | '9.1' | '12.1' | '12.2"'|'12.3"'| '12.4"'| '12.5"
| '12.6"

Modulation and coding scheme index, specified as an integer from 0 to 24 or one of the
extended MCS indices: '9.1', '12.1"', '12.2"', '12.3", '12.4','12.5" or '12.6".
An extended (non-integer) MCS index can only be specified as a character vector or string
scalar. An integer MCS index can be specified as a character vector, string scalar, or
integer. The MCS index indicates the modulation and coding scheme used in transmitting
the current packet.

* Modulation and coding scheme for control PHY

MCS Index Modulation Coding Rate Comment

Code rate and data
rate might be lower
due to codeword
shortening.

0 DBPSK 172

wlanDMGHeaderBitRecover

Modulation and coding schemes for single-carrier modulation

MCS Index Modulation | Coding Rate Ncgps Repetition
1 1/2 2
2 1/2
3 /2 BPSK 5/8 1
4 3/4
5 13/16
6 1/2
7 5/8
8 /2 QPSK 3/4 2
9 13/16
9.1 7/8
10 1/2 !
11 5/8
12 /2 16QAM 3/4 4
12.1 3/4
12.2 7/8
12.3 5/8
12.4 3/4
64QAM 6
12.5 13/16
12.6 7/8
Ncgps is the number of coded bits per symbol.
* Modulation and coding schemes for OFDM modulation
MCS Index | Modulation | Coding Rate Ngpsc Ncgps Npgps
13 1/2 168
SQPSK 1 336
14 5/8 210
15 1/2 336
16 QPSK 5/8 2 672 420

1-85

1 Functions — Alphabetical List

MCS Index | Modulation | Coding Rate Ngpsc Ncgps Npgps
17 3/4 504
18 1/2 672
19 5/8 840
16QAM 4 1344

20 3/4 1008
21 13/16 1092
22 5/8 1260
23 64QAM 3/4 6 2016 1512
24 13/16 1638

Ngpsc is the number of coded bits per single carrier.

Ncgps is the number of coded bits per symbol.

Npgps is the number of data bits per symbol.

Data Types: double | char | string

TrainingLength — Number of training fields
0 (default) | integer from 0 to 64

Number of training fields, specified as an integer from 0 to 64. TrainingLength must be
a multiple of four.

Data Types: double

PacketType — Packet training field type
'"TRN-R' (default) | 'TRN-T'

Packet training field type, specified as ' TRN-R' or 'TRN-T'. This property applies when
TrainingLength > 0.

'TRN-R' indicates that the packet includes or requests receive-training subfields and
"TRN-T' indicates that the packet includes transmit-training subfields.

Data Types: char | string

BeamTrackingRequest — Request beam tracking
false (default) | true

1-86

wlanDMGHeaderBitRecover

Request beam tracking, specified as a logical. Setting BeamTrackingRequest to true
indicates that beam tracking is requested. This property applies when
TrainingLength > 0.

Data Types: logical

TonePairingType — Tone pairing type
'Static' (default) | 'Dynamic'’

Tone pairing type, specified as 'Static' or 'Dynamic'. This property applies when MCS
is from 13 to 17. Specifically, TonePairingType applies when using OFDM and either
SQPSK or QPSK modulation.

Data Types: char | string

DTPGroupPairIndex — DTP group pair index
(0:1:41) (default) | 42-by-1 integer vector

DTP group pair index, specified as a 42-by-1 integer vector for each pair. Element values
must be from 0 to 41, with no duplicates. This property applies when MCS is from 13 to 17
and when TonePairingTypeis 'Dynamic’.

Data Types: double

DTPIndicator — DTP update indicator
false (default) | true

DTP update indicator, specified as a logical. Toggle DTPIndicator between packets to
indicate that the dynamic tone pair mapping has been updated. This property applies
when MCS is from 13 to 17 and when TonePairingTypeis 'Dynamic'.

Data Types: logical

PSDULength — Number of bytes carried in the user payload
1000 (default) | integer from 1 to 262,143

Number of bytes carried in the user payload, specified as an integer from 1 to 262,143.

Data Types: double

ScramblerInitialization — Initial scrambler state
2 (default) | integer from 1 to 127

Initial scrambler state of the data scrambler for each packet generated, specified as an
integer depending on the value of MCS:

1-87

1 Functions — Alphabetical List

1-88

» IfMCS is 0, the initial scrambler state is limited to values from 1 to 15, corresponding
to a 4-by-1 column vector..

+ IfMCSis '9.1','12.1', '12.2', '12.3", '12.4"', '12.5"' or '12.6", the valid
range of the initial scrambler is from 0 to 31, corresponding to a 5-by-1 column vector.

* For the remaining MCS values, the valid range is from 1 to 127, corresponding to a 7-
by-1 column vector.

The default value of 2 is the example state given in IEEE Std 802.11-2012, Amendment 3,

Section L.5.2.

Data Types: double | int8

AggregatedMPDU — MPDU aggregation indicator
false (default) | true

MPDU aggregation indicator, specified as a logical. Setting AggregatedMPDU to true
indicates that the current packet uses A-MPDU aggregation.

Data Types: logical

LastRSSI — Received power level of the last packet
0 (default) | integer from 0 to 15

Received power level of the last packet, specified as an integer from 0 to 15.

When transmitting a response frame immediately following a short interframe space
(SIFS) period, a DMG STA sets the LastRSSI as specified in IEEE 802.11ad-2012,
Section 9.3.2.3.3, to map to the TXVECTOR parameter LAST RSSI of the response frame
to the power that was measured on the received packet, as reported in the RCPI field of
the frame that elicited the response frame. The encoding of the value for TXVECTOR is as
follows:

* Power values equal to or above -42 dBm are represented as the value 15.

» Power values between -68 dBm and -42 dBm are represented as round((power - (-71
dBm))/2).

» Power values less than or equal to -68 dBm are represented as the value of 1.

» For all other cases, the DMG STA shall set the TXVECTOR parameter LAST RSSI of
the transmitted frame to 0.

wlanDMGHeaderBitRecover

The LAST RSSI parameter in RXVECTOR maps to LastRSSI and indicates the value of

the LAST RSSI field from the PCLP header of the received packet. The encoding of the

value for RXVECTOR is as follows:

» Avalue of 15 represents power greater than or equal to -42 dBm.

* Values from 2 to 14 represent power levels (-71+valuex2) dBm.

* Avalue of 1 represents power less than or equal to -68 dBm.

» Avalue of 0 indicates that the previous packet was not received during the SIFS
period before the current transmission.

For more information, see IEEE 802.11ad-2012, Section 21.2.

Data Types: double

Turnaround — Turnaround indication
false (default) | true

Turnaround indication, specified as a logical. Setting Turnaround to true indicates that
the STA is required to listen for an incoming PPDU immediately following the
transmission of the PPDU. For more information, see IEEE 802.11ad-2012, Section
9.3.2.3.3.

Data Types: logical

csi — Channel State Information
real column vector

Channel state information, specified as a 336-by-1 real column vector. The value 336
specifies the number of data subcarriers in the DMG data field. csi is required only for
OFDM PHY.

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

1-89

1 Functions — Alphabetical List

1-90

Example: 'MaximumLDPCIterationCount','12', 'EarlyTermination', 'false'
specifies a maximum of 12 decoding iterations for the LDPC and disables early
termination of LDPC decoding so that it completes the 12 iterations.

MaximumLDPCIterationCount — Maximum number of decoding iterations in
LDPC
12 (default) | positive scalar integer

Maximum number of decoding iterations in LDPC, specified as a positive scalar integer.
This parameter is applicable when channel coding is set to LDPC for the user of interest.

For information on channel coding options, see the 802.11 format configuration object of
interest.

Data Types: double

EarlyTermination — Enable early termination of LDPC decoding
false (default) | true

Enable early termination of LDPC decoding, specified as a logical. This parameter is
applicable when channel coding is set to LDPC for the user of interest.

* When set to false, LDPC decoding completes the number of iterations specified by
MaximumLDPCIterationCount, regardless of parity check status.

* When set to true, LDPC decoding terminates when all parity-checks are satisfied.

For information on channel coding options, see the 802.11 format configuration object of
interest.

Output Arguments

headerBits — Recovered header information bits
110 | column vector

Recovered header information bits, returned as a column vector of 64 elements for OFDM
and single-carrier PHYs and a column vector of 40 elements for control PHYs.

Data Types: int8

failHCS — HCS check
false | true

wlanDMGHeaderBitRecover

HCS check, returned as a logical. When headerBits fails the HCS check, failHCS is
true.

Data Types: logical

Definitions

DMG Header Field

In the DMG format, the header field is different in size and content for every supported
physical layer (PHY) modulation scheme. This field contains additional important

information for the receiver.

DMG Format PPDU

Preamble
Training Subfields
Header
Control PHY
H] [— EH
2| Scrambler = raining gl
2| nitialization Length Z[Length gl 2 HCS
[= =| =
1 4 10 1 5 1 2 16

Single Carrier (5C) PHY

2|2 . £le4 3
I;'t:i:;::tli?:rn MCS Length % z Tl_r::‘:;?hg %E: Last RSSI E Reserved HCS
z|z §§ 2
4 5 18 11 5 11 4 1 4 16
OFDM PHY
i Slz |2 |2 E B
Scrambler MCcs Length Blz| raining [4(F5fEa Bl | peree |3 HCS
Initialization eng 5|3 Length ééw = B el 2
I < = | & =
4 5 18 11 5 171 11 4 1 2 16

The total size of the header field is 40 bits for control PHYs and 64 bits for SC and OFDM
PHYs.

The most important fields common for the three PHY modes are:

1-91

1 Functions — Alphabetical List

1-92

» Scrambler initialization — Specifies the initial state for the scrambler.

* MCS — Specifies the modulation and coding scheme used in the data field. It is not
present in control PHY.

* Length (data) — Specifies the length of the data field.

* Packet type — Specifies whether the beamforming training field is intended for the
receiver or the transmitter.

* Training length — Specifies whether a beamforming training field is used and if so, its
length.

* HCS — Provides a checksum per CRC for the header.

IEEE 802.11ad-2012 specifies the detailed aspects of the DMG header field structure. In
particular, the PHY modulation-specific aspects of the header field are specified in these
sections:

* The DMG control PHY header structure is specified in Section 21.4.3.2.

* The DMG OFDM PHY header structure is specified in Section 21.5.3.1.

* The DMG SC PHY header structure is specified in Section 21.6.3.1.

References

[1] IEEE Std 802.11ad™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

wlanDMGHeaderBitRecover

See Also
wlanDMGConfig | wlanDMGDataBitRecover

Introduced in R2017b

1-93

1 Functions — Alphabetical List

1-94

wlanFineCFOEstimate

Fine estimate of carrier frequency offset

Syntax

fOffset
fOffset

wlanFineCFOEstimate(rxSig, cbw)
wlanFineCFOEstimate(rxSig, cbw,corrOffset)

Description

fOffset = wlanFineCFOEstimate(rxSig, cbw) returns a fine estimate of the carrier
frequency offset (CFO) given received time-domain “L-LTF” on page 1-99% samples
rxSig and channel bandwidth cbw.

fOffset = wlanFineCFOEstimate(rxSig, cbw,corrOffset) returns the estimated
frequency offset given correlation offset corrOffset.

Examples

Fine Estimate of Carrier Frequency Offset

Create non-HT configuration object.

nht = wlanNonHTConfig;

Generate a non-HT waveform.

txSig = wlanWaveformGenerator([1;0;0;1],nht);

Create a phase and frequency offset object and introduce a 2 Hz frequency offset.

2. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

wlanFineCFOEstimate

pfOffset = comm.PhaseFrequencyOffset('SampleRate',20e6, 'Frequency0ffset',2);
rxSig = pfOffset(txSig);

Extract the L-LTF and estimate the frequency offset.

ind = wlanFieldIndices(nht, 'L-LTF");

rx11tf = rxSig(ind(1):ind(2),:);

freq0ffsetEst = wlanFineCFOEstimate(rx11tf, 'CBW20")

freq0ffsetEst = 2.0000

Estimate and Correct CFO for VHT Waveform

Estimate the frequency offset for a VHT signal passing through a noisy, TGac channel.
Correct for the frequency offset.

Create a VHT configuration object and create the L-LTF.

vht = wlanVHTConfig;
tx1ltf = wlanLLTF(vht);

Set the sample rate to correspond to the default bandwidth of the VHT configuration
object.

fs = 80e6;

Create TGac and thermal noise channel objects. Set the noise figure of the AWGN channel
to 10 dB.

tgacChan = wlanTGacChannel('SampleRate',fs,
'ChannelBandwidth',vht.ChannelBandwidth,
'DelayProfile', 'Model-C', 'LargeScaleFadingEffect', 'Pathloss');

noise = comm.ThermalNoise('SampleRate', fs,
'NoiseMethod', 'Noise figure',
'NoiseFigure',10);

Pass the L-LTF through the noisy TGac channel.

rxltfNoNoise = tgacChan(txltf);
rx1tf = noise(rx1tfNoNoise);

Create a phase and frequency offset object and introduce a 25 Hz frequency offset.

1-95

1 Functions — Alphabetical List

1-96

pfoffset = comm.PhaseFrequencyOffset('SampleRate',fs, 'Frequency0ffsetSource', 'Input po!

rxltf = pfoffset(rxltf,b25);

Perform a fine estimate the frequency offset using a correlation offset of 0.6. Your results
may differ slightly.

fOffsetEst = wlanFineCFOEstimate(rx1tf,vht.ChannelBandwidth,0.6)

fOffsetEst 28.0773

Correct for the estimated frequency offset.

rxltfCorr = pfoffset(rxltf,-fOffsetEst);

Estimate the frequency offset of the corrected signal.
fOffsetEstCorr = wlanFineCFOEstimate(rx1tfCorr,vht.ChannelBandwidth,0.6)

fOffsetEstCorr 2.5029e-13

The corrected signal has negligible frequency offset.

Two-Step CFO Estimation and Correction

Estimate and correct for a significant carrier frequency offset in two steps. Estimate the
frequency offset after all corrections have been made.

Set the channel bandwidth and the corresponding sample rate.

cbw = 'CBW40';
fs = 40e6;

Coarse Frequency Correction

Generate an HT format configuration object.

cfg = wlanHTConfig('ChannelBandwidth', cbw);
Generate the transmit waveform.

txSig = wlanWaveformGenerator([1;0;0;1],cfqg);

wlanFineCFOEstimate

Create TGn and thermal noise channel objects. Set the noise figure of the receiver to 9
dB.

tgnChan = wlanTGnChannel('SampleRate',fs, 'DelayProfile', 'Model-D",
'LargeScaleFadingEffect', 'Pathloss and shadowing');

noise = comm.ThermalNoise('SampleRate',fs,
'NoiseMethod', 'Noise figure',
'NoiseFigure',9);

Pass the waveform through the TGn channel and add noise.

rxSigNoNoise = tgnChan(txSig);
rxSig = noise(rxSigNoNoise);

Create a phase and frequency offset object to introduce a carrier frequency offset.
Introduce a 2 kHz frequency offset.

pfOffset = comm.PhaseFrequencyOffset('SampleRate',fs, 'Frequency0ffsetSource', 'Input po
rxSig = pfOffset(rxSig,2e3);

Extract the L-STF signal for coarse frequency offset estimation.

istf = wlanFieldIndices(cfg, 'L-STF');
rxstf = rxSig(istf(1l):istf(2),:);

Perform a coarse estimate of the frequency offset. Your results may differ.

foffsetl wlanCoarseCFOEstimate(rxstf, cbw)

foffsetl

2.0221e+03

Correct for the estimated offset.

rxSigCorrl = pfOffset(rxSig,-foffsetl);
Fine Frequency Correction

Extract the L-LTF signal for fine offset estimation.

iltf = wlanFieldIndices(cfg, 'L-LTF');
rxltfl = rxSigCorrl(iltf(1):i1tf(2),:);

Perform a fine estimate of the corrected signal.

foffset2 = wlanFineCFOEstimate(rx1tfl, cbw)

1-97

1 Functions — Alphabetical List

1-98

foffset2 = -11.0795
The corrected signal offset is reduced from 2000 Hz to approximately 7 Hz.

Correct for the remaining offset.
rxSigCorr2 = pfOffset(rxSigCorrl, -foffset2);
Determine the frequency offset of the twice corrected signal.

rx1tf2 = rxSigCorr2(iltf(1):i1tf(2),:);
deltaFreq = wlanFineCFOEstimate(rx1tf2, cbw)

deltaFreq = -2.0374e-11

The CFO is zero.

Input Arguments

rxSig — Received signal
matrix

Received signal containing an L-LTF, specified as an Ng-by-Ny matrix. Ng is the number of
samples in the L-LTF and Ny, is the number of receive antennas.

Note If the number of samples in rxSig is greater than the number of samples in the L-
LTF, the trailing samples are not used to estimate the carrier frequency offset.

Data Types: double

cbw — Channel bandwidth
"CBW5' | 'CBW10O' | 'CBW20' | 'CBW40' | 'CBW8O' | 'CBW160'

Channel bandwidth in MHz, specified as 'CBW5', 'CBW10', 'CBW20"', 'CBW40",
'CBW80O', or 'CBW160"'.

Data Types: char | string

corrOffset — Correlation offset
0.75 (default) | real scalar from 0 to 1

wlanFineCFOEstimate

Correlation offset as a fraction of the L-LTF cyclic prefix, specified as a real scalar from 0
to 1. The duration of the short training symbol varies with bandwidth. For more
information, see “L-LTF” on page 1-99.

Data Types: double

Output Arguments

foffset — Frequency offset
real scalar

Frequency offset in Hz, returned as a real scalar.

Data Types: double

Definitions

L-LTF

The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP legacy
preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

Legacy Preamble

L-LTF

TLons

Channel estimation, fine frequency offset estimation, and fine symbol timing offset
estimation rely on the L-LTF.

1-99

1 Functions — Alphabetical List

1-100

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The CP consists of the second half of the long training symbol.

L-LTF
cP Cc1 c2
Tan Terr Teer

The L-LTF duration varies with channel bandwidth.

Channel Subcarrier Fast Fourier Cyclic Prefix or |L-LTF Duration
Bandwidth Frequency Transform Training (Tiong = Tai2 +
(MHz) Spacing, A¢ (FFT) Period Symbol Guard |2 X Tgep)
(kHz) (Teer = 1/ 4A) |Interval (GI2)

Duration

(Teiz = Trer / 2)
20, 40, 80, and |[312.5 3.2 us 1.6 ps 8 us
160
10 156.25 6.4 ps 3.2 us 16 ps
5 78.125 12.8 us 6.4 us 32 us
References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[2] Li, Jian. “Carrier Frequency Offset Estimation for OFDM-Based WLANSs.” IEEE Signal
Processing Letters. Vol. 8, Issue 3, Mar 2001, pp. 80-82.

wlanFineCFOEstimate

[3] Moose, P. H. “A technique for orthogonal frequency division multiplexing frequency
offset correction.” IEEE Transactions on Communications. Vol. 42, Issue 10, Oct
1994, pp. 2908-2914.

[4] Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac.
2nd Edition. United Kingdom: Cambridge University Press, 2013.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

comm.PhaseFrequencyOffset | wlanCoarseCFOEstimate | wlanLLTF

Introduced in R2015b

1-101

1 Functions — Alphabetical List

1-102

wlanLLTFChannelEstimate

Channel estimation using L-LTF

Syntax

chEst
chEst
chEst

wlanLLTFChannelEstimate(demodSig, cfg)
wlanLLTFChannelEstimate(demodSig, cbw)
wlanLLTFChannelEstimate(,span)

Description

chEst = wlanLLTFChannelEstimate(demodSig, cfg) returns the channel estimate
between the transmitter and all receive antennas using the demodulated “L-LTF” on page
1-1123, demodSig, given the parameters specified in configuration object cfg.

chEst = wlanLLTFChannelEstimate(demodSig, cbw) returns the channel estimate
given channel bandwidth cbw. The channel bandwidth can be used instead of the
configuration object.

chEst = wlanLLTFChannelEstimate(,span) returns the channel estimate and
performs frequency smoothing over the specified filter span. For more information, see
“Frequency Smoothing” on page 1-113.

This syntax supports input options from prior syntaxes.

Examples

Estimate SISO Channel Using L-LTF

Create VHT format configuration object. Generate a time-domain waveform for an
802.11ac VHT packet.

3. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

wlanLLTFChannelEstimate

vht = wlanVHTConfig;
txWaveform = wlanWaveformGenerator([1;0;0;1],vht);

Multiply the transmitted VHT signal by -0.1 + 0.5i and pass it through an AWGN channel
with a 30 dB signal-to-noise ratio.

rxWaveform = awgn(txWaveform*(-0.1+0.5i),30);

Extract the L-LTF field indices and demodulate the L-LTF. Perform channel estimation
without frequency smoothing.

idxLLTF = wlanFieldIndices(vht, 'L-LTF");
demodSig = wlanLLTFDemodulate(rxWaveform(idxLLTF(1):1idxLLTF(2),:),vht);

est = wlanLLTFChannelEstimate(demodSig,vht);

Plot the channel estimate.

scatterplot(est)
grid

1-103

1 Functions — Alphabetical List

1-104

Scatter plot

0571 d"]

0471]

017]

Quadrature
]

0.5 1] 0.5
In-Phase

The channel estimate matches the complex channel multiplier.

L-LTF Channel Estimation After TGn Channel

Generate a time domain waveform for an 802.11n HT packet, pass it through a TGn
fading channel and perform L-LTF channel estimation. Trailing zeros are added to the
waveform to allow for TGn channel delay.

Create the HT packet configuration and transmit waveform.

cfgHT = wlanHTConfig;
txWaveform = wlanWaveformGenerator([1;0;0;1],cfgHT);

wlanLLTFChannelEstimate

Configure a TGn channel with 20 MHz bandwidth.

tgnChannel = wlanTGnChannel;
tgnChannel.SampleRate = 20e6;

Pass the waveform through the TGn channel, adding trailing zeros to allow for channel
delay.

rxWaveform = tgnChannel([txWaveform; zeros(15,1)]);

Skip the first four samples to synchronize the received waveform for channel delay.
rxWaveform = rxWaveform(5:end, :);

Extract the L-LTF and perform channel estimation.

idnLLTF = wlanFieldIndices(cfgHT, 'L-LTF");

sym wlanLLTFDemodulate(rxWaveform(idnLLTF(1):idnLLTF(2),:),cfgHT);
est wlanLLTFChannelEstimate(sym, cfgHT);

Estimate 80 MHz SISO Channel Using L-LTF

Create a VHT format configuration object. Using these objects, generate a time-domain
waveform for an 802.11ac VHT packet.

vht = wlanVHTConfig('ChannelBandwidth', 'CBW80");
txWaveform = wlanWaveformGenerator([1;0;0;1],vht);

Multiply the transmitted VHT signal by -0.4 + 0.3i and pass it through an AWGN channel.
rxWaveform = awgn(txWaveform*(-0.4+0.31i),30);

Specify the channel bandwidth for demodulation and channel estimation. Extract the L-
LTF field indices, demodulate the L-LTF, and perform channel estimation without
frequency smoothing.

chanBW = 'CBW80O';

idXLLTF = wlanFieldIndices(vht, 'L-LTF');

demodSig = wlanLLTFDemodulate(rxWaveform(idxLLTF(1):idxLLTF(2),:),chanBW);
est = wlanLLTFChannelEstimate(demodSig, chanBW);

Plot the channel estimate.

1-105

1 Functions — Alphabetical List

1-106

scatterplot(est)
grid

Scatter plot

0471]

021]

Quadrature
]

-0.4 0.2 1] 0.2 0.4
In-Phase

The channel estimate matches the complex channel multiplier.

Estimate SISO Channel Using L-LTF and Smoothing Filter

Create a VHT format configuration object. Generate a time-domain waveform for an
802.11ac VHT packet.

vht = wlanVHTConfig;
txWaveform = wlanWaveformGenerator([1;0;0;1],vht);

wlanLLTFChannelEstimate

Multiply the transmitted VHT signal by 0.2 - 0.6i and pass it through an AWGN channel
having a 10 dB SNR.

rxWaveform = awgn(txWaveform*complex(0.2,-0.6),10);
Extract the L-LTF from the received waveform. Demodulate the L-LTF.

idXLLTF = wlanFieldIndices(vht, 'L-LTF');
11tfDemodSig = wlanLLTFDemodulate(rxWaveform(idxLLTF(1):idxLLTF(2),:),vht);

Use the demodulated L-LTF signal to generate the channel estimate.
est = wlanLLTFChannelEstimate(lltfDemodSig,vht);
Plot the channel estimate.

scatterplot(est)
grid

1-107

1 Functions — Alphabetical List

Scatter plot

1 [T T T T T]

0.8 1

0.6 1

0.4r 1

L opz2r 1
=
o

= Or i
[}
=

021]

Tt e
—D'q' B .' :r ::"'.n.: . 1
- _rl."-‘ F L ‘1-'
06T . %?ﬁ % s 1
H I' ’:_. l"::‘:. H F

08t .'- _‘:-:"}: * s]

—1 Ci i i = i i

-1 0.5 0 0.5 1

In-Phase

The channel estimate is noisy, which may lead to inaccurate data recovery.

Estimate the channel again with the filter span set to 11.

est = wlanLLTFChannelEstimate(11tfDemodSig,vht,11);
scatterplot(est)
grid

1-108

wlanLLTFChannelEstimate

Scatter plot

0.8

06

0471

0.2r1

Quadrature
]

0.5

In-Phase

The filtering provides a better channel estimate.

Estimate Channel with L-LTF and Recover VHT-SIG-A

Create a VHT format configuration object. Generate L-LTF and VHT-SIG-A fields.

vht = wlanVHTConfig;
tXLLTF = wlanLLTF(vht);

txSig = wlanVHTSIGA(vht);

Create a TGac channel for an 80 MHz bandwidth and a Model-A delay profile. Pass the
transmitted L-LTF and VHT-SIG-A signals through the channel.

1-109

1 Functions — Alphabetical List

tgacChan = wlanTGacChannel('SampleRate',80e6, 'ChannelBandwidth"', 'CBW80O",
'DelayProfile', 'Model-A');

rxLLTFNoNoise = tgacChan(txLLTF);
rxSigNoNoise = tgacChan(txSig);

Create an AWGN noise channel with an SNR = 15 dB. Add the AWGN noise to L-LTF and
VHT-SIG-A signals.

chNoise = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)',
'SNR',15);

rxLLTF = chNoise(rxLLTFNoNoise);
rxSig = chNoise(rxSigNoNoise);

Create an AWGN channel having a noise variance corresponding to a 9 dB noise figure
receiver. Pass the faded signals through the AWGN channel.

nVar = 10™((-228.6 + 10*10g10(290) + 10*1ogl0O(80e6) + 9)/10);
awgnChan = comm.AWGNChannel('NoiseMethod', 'Variance', 'Variance',nVar);

rxLLTF = awgnChan(rxLLTF);
rxSig = awgnChan(rxSig);

Demodulate the received L-LTE.

demodLLTF = wlanLLTFDemodulate(rxLLTF,vht);

Estimate the channel using the demodulated L-LTF.

chEst = wlanLLTFChannelEstimate(demodLLTF,vht);

Recover the VHT-SIG-A signal and verify that there was no CRC failure.

[recBits,crcFail] = wlanVHTSIGARecover(rxSig,chEst,nVar, 'CBW80');
crcFail

crcFail = logical
0

1-110

wlanLLTFChannelEstimate

Input Arguments

demodSig — Demodulated L-LTF OFDM symbols
3-D array

Demodulated L-LTF OFDM symbols, specified as an Ngt-by-Ngym-by-Ny array. Ngr is the
number of occupied subcarriers. Ngyy is the number of demodulated L-LTF symbols (one
or two). Ny is the number of receive antennas. Each column of the 3-D array is a
demodulated L-LTF OFDM symbol. If you specify two L-LTF symbols,
wlanLLTFChannelEstimate averages the channel estimate over both symbols.

Data Types: double
Complex Number Support: Yes

cfg — Format configuration
wlanVHTConfig object | wlanHTConfig object | wlanNonHTConfig object

Format configuration, specified as one of these objects:

* wlanVHTConfig for VHT format
* wlanHTConfig for HT format
* wlanNonHTConfig for non-HT format

The wlanLLTFChannelEstimate function uses the ChannelBandwidth property of
cfg.

cbw — Channel bandwidth
"CBW5' | 'CBW1O' | 'CBW20"' | 'CBW40"' | 'CBW8O"' | 'CBW160"

Channel bandwidth of the packet transmission waveform, specified as:

PPDU Transmission Format Valid Channel Bandwidth

VHT 'CBW20', 'CBW40"', 'CBW80O"' (default), or
'CBW160"

HT 'CBW20"' (default) or 'CBW40'

non-HT "CBW5"', 'CBW10', or 'CBW20"' (default)

Data Types: char | string

span — Filter span
positive odd integer

1-111

1 Functions — Alphabetical List

1-112

Filter span of the frequency smoothing filter, specified as a positive odd integer and
expressed as a number of subcarriers. Frequency smoothing is applied only when span is
specified and is greater than one. See “Frequency Smoothing” on page 1-113.

Note Frequency smoothing is recommended only when a single transmit antenna is used.

Data Types: double

Output Arguments

chEst — Channel estimate
3-D array

Channel estimate containing data and pilot subcarriers, returned as an Ngr-by-1-by-Ng

array. Ngr is the number of occupied subcarriers. The value of 1 corresponds to the single
transmitted stream in the L-LTF. Ny is the number of receive antennas.

Definitions

L-LTF

The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP legacy
preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

Legacy Preamble

L-LTF

TLCINS

wlanLLTFChannelEstimate

Channel estimation, fine frequency offset estimation, and fine symbol timing offset
estimation rely on the L-LTF.

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The CP consists of the second half of the long training symbol.

L-LTF
cp Cc1 c2
Taiz Teer Tesr

The L-LTF duration varies with channel bandwidth.

Channel Subcarrier Fast Fourier Cyclic Prefix or |L-LTF Duration
Bandwidth Frequency Transform Training (Tong = Tz +
(MHz) Spacing, A¢ (FFT) Period Symbol Guard |2 X Tger)
(kHz) (Teer = 1/ 4¢) |Interval (GI2)
Duration
(Teiz = Trer / 2)
20, 40, 80, and |312.5 3.2 us 1.6 ps 8 ps
160
10 156.25 6.4 us 3.2 us 16 ps
5 78.125 12.8 ps 6.4 us 32 ps

Frequency Smoothing

Frequency smoothing can improve channel estimation for highly correlated channels by
averaging out white noise.

Frequency smoothing is recommended only for cases in which a single transmit antenna
is used. Frequency smoothing consists of applying a moving-average filter that spans

1-113

1 Functions — Alphabetical List

1-114

multiple adjacent subcarriers. Channel conditions dictate whether frequency smoothing is
beneficial.

» If adjacent subcarriers are highly correlated, frequency smoothing results in
significant noise reduction.

* In a highly frequency-selective channel, smoothing can degrade the quality of the
channel estimate.

References

[1] Van de Beek, J.-]., O. Edfors, M. Sandell, S. K. Wilson, and P. O. Borjesson. “On Channel
Estimation in OFDM Systems." Vehicular Technology Conference, IEEE 45th,
Volume 2, IEEE, 1995.

[2] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and

metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

wlanHTConfig | wlanHTLTFChannelEstimate | wlanLLTFDemodulate |
wlanNonHTConfig | wlanVHTConfig | wlanVHTLTFChannelEstimate

Introduced in R2015b

wlanHEDataBitRecover

wlanHEDataBitRecover

Recover data bits from HE data field

Syntax

dataBits = wlanHEDataBitrecover(rxDataSym,noiseVarEst, cfgHE)

dataBits = wlanHEDataBitrecover(rxDataSym,noiseVarEst,csi, cfgHE)
dataBits = wlanHEDataBitrecover(rxDataSym,noiseVarEst, cfgHE,userIdx)
dataBits = wlanHEDataBitrecover(rxDataSym,noiseVarEst,csi,cfgHE,
userIdx)

recBits = wlanHEDataBitrecover(__ ,Name,Value)

Description

dataBits = wlanHEDataBitrecover(rxDataSym,noiseVarEst, cfgHE)recovers
the data bits given the equalized HE Data OFDM symbols from an “HE Data Field” on
page 1-121 of a single user transmission, the noise variance estimate, and the single user
HE configuration object.

dataBits = wlanHEDataBitrecover(rxDataSym,noiseVarEst,csi,
cfgHE)recovers the data bits given the equalized HE Data OFDM symbols from an “HE
Data Field” on page 1-121 of a single user transmission, using the channel state
information to enhance the demapping of OFDM subcarriers.

dataBits = wlanHEDataBitrecover(rxDataSym,noiseVarEst, cfgHE,
userIdx)recovers the data bits given the equalized HE Data OFDM symbols from an
“HE Data Field” on page 1-121 for the specified user of a multi-user HE transmission, the
noise variance estimate, the multi-user HE configuration object, and the user index.

dataBits = wlanHEDataBitrecover(rxDataSym,noiseVarEst,csi,cfgHE,

userIdx)recovers the data bits given the equalized HE Data OFDM symbols from an
“HE Data Field” on page 1-121 for the specified user of a multi-user HE transmission,
using the channel state information to enhance the demapping of OFDM subcarriers.

1-115

1 Functions — Alphabetical List

1-116

recBits = wlanHEDataBitrecover(,Name, Value)specifies additional options
in name-value pair arguments, using the inputs from preceding syntaxes. When a name-
value pair is not specified, its default value is used.

Examples

Recover Single User HE Packet Data in AWGN

Recover HE data from a single user HE packet waveform transmitted though an AWGN
channel.

cfgHE = wlanHESUConfig('MCS',11);
Generate transmit waveform containing eight data packets.

msgLen = getPSDULength(cfgHE)*8;
txBits = randi([0 1],msgLen,1,'int8');
txWaveform = wlanWaveformGenerator(txBits, cfgHE);

Add noise to the waveform.

snr = 30;
rxWaveform = awgn(txWaveform,snr);

Extract the data field.

ind = wlanFieldIndices(cfgHE);
rxData = rxWaveform(ind.HEData(1):ind.HEData(2),:);

Assuming 20 MHz channel bandwidth and 3.2 microsecond guard interval, OFDM
demodulate the received waveform and extract the data carrying subcarriers.

Nfft = 256; % FFT length (20 MHz)

Ncp = 64; % Cyclic prefix length (3.2 us at 20 MHz)

pilotSC = [-116; -90; -48; -22; 22; 48; 90; 116]; % Pilot indices
ruSC = [-122:-2 2:122]."'; % Active subcarrier indices

nullIdx = setdiff((-Nfft/2:(Nfft/2-1))."',ruSC)+Nfft/2+1;

pilotIdx = pilotSC+Nfft/2+1;

st = (1/sqrt(numel(ruSC)))*Nfft; % Scaling factor

rxSym = ofdmdemod(rxData,Nfft,Ncp,Ncp,nullldx,pilotIdx)/sT;

Recover the data bits.

wlanHEDataBitRecover

csi = ones(length(rxSym),1); % Assume CSI estimate of all ones

nVar = 10”(-snr/10); % Noise variance
rxBits = wlanHEDataBitRecover(rxSym,nVar,csi,cfgHE);

Compare the recovered bits to the original information bits.
disp(isequal(txBits,rxBits));

1

Decode Multiuser HE Data Field
Decode the HE data field for each user in an OFDMA transmission.
Waveform Generation

Create the multi-user HE object and packet configuration.

allocationIndex = 96; % Two 106-tone RUs, two users, 20 MHz
cfg = wlanHEMUConfig(allocationIndex);

cfg.User{1}.MCS = 4;

cfg.User{2}.APEPLength = 1le3;

cfg.User{2}.MCS = 7;

Generate random data based on the specific PSDU length per user.

numUsers = numel(cfg.User);
psduLength = getPSDULength(cfg);
txBits = cell(1l,numUsers);
for i = 1l:numUsers
txBits{i} = randi([0@ 1],psduLength(i)*8,1);
end

Generate the OFDMA waveform signal and add AWGN to the signal.
txWaveform = wlanWaveformGenerator(txBits,cfg);

snr = 25;

rxWaveform = awgn(txWaveform,snr);

Receiver Processing Per User

Using the PPDU field indices structure, extract the HE data field for each user.

1-117

1 Functions — Alphabetical List

ind

wlanFieldIndices(cfqg)

struct with fields:
LSTF: [
LLTF: [
LSIG: [

RLSIG: [
HESIGA: [481 640
[

[
[
[

ind

HESIGB:
HESTF:
HELTF:

HEData:

961 1280]

rxData = rxWaveform(ind.HEData(1):ind.HEData(2),:);

For each user, OFDM demodulate and extract data carrying subcarriers assuming 20 MHz
channel bandwidth, and 3.2 microsecond guard interval for the appropriate RU.

for userIdx = 1l:numUsers

Nfft = 256; % FFT length (20 MHz)
Ncp = 64; % Cyclic prefix length (3.2 us at 20 MHz)
pilotSC = [-116; -90; -48; -22; 22; 48; 90; 116]; % Pilot indices
if userIdx==1

rusC = (-122:-17).'; % Active subcarrier indices RU #1
else

ruSC = (17:122)."'; % Active subcarrier indices RU #2
end
nullIdx = setdiff((-Nfft/2:(Nfft/2-1))."',ruSC)+Nfft/2+1;
pilotIdx = pilotSC(ismember (pilotSC, ruSC))+Nfft/2+1;
st = (1/sqrt(2*numel(ruSC)))*Nfft; % Scaling factor
rxSym = ofdmdemod(rxData,Nfft,Ncp,Ncp,nullldx,pilotIdx)/sf;

% Recover data bits and compare with transmitted
csi = ones(length(rxSym),1); % Assume CSI estimate of all ones
nVar = 10”°(-snr/10); % Noise variance
rxBits = wlanHEDataBitRecover(rxSym,nVar,csi,cfg,userldx);
disp(isequal(rxBits,txBits{userIdx}))

end

1-118

wlanHEDataBitRecover

Input Arguments

rxDataSym — Equalized HE Data field OFDM symbols
real or complex matrix

Equalized HE Data field OFDM symbols for a user, specified as an Ngp-by-Ngym,-by-Ngs
array of real or complex values. Ngp is the number of data subcarriers in the HE Data
field, Ngyy, is the number of OFDM symbols, and Ngg is the number of spatial streams.The
contents and size of rxDataSym depend on the HE PPDU format configuration.

Data Types: double
Complex Number Support: Yes

noiseVarEst — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar.

Data Types: double

csi — Channel State Information
matrix

Channel state information, specified as an Ngr-by-Ngg matrix of real values. Ngr is the
number of subcarriers and Ngg is the number of spatial streams.

Data Types: double

cfgHE — HE PPDU object
wlanHESUConfig object | wlanHEMUConfig object

HE configuration object
DMG PPDU configuration, specified as a wlanHESUConfig or wlanHEMUConfig object.

userIdx — User index
positive integer

User index, specified as a positive integer in the range [1,8].

1-119

1 Functions — Alphabetical List

1-120

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: 'MaximumLDPCIterationCount','12', 'EarlyTermination', 'false'
specifies a maximum of 12 decoding iterations for the LDPC and disables early
termination of LDPC decoding so that it completes the 12 iterations.

MaximumLDPCIterationCount — Maximum number of decoding iterations in
LDPC
12 (default) | positive scalar integer

Maximum number of decoding iterations in LDPC, specified as a positive scalar integer.
This parameter is applicable when channel coding is set to LDPC for the user of interest.

For information on channel coding options, see the 802.11 format configuration object of
interest.
Data Types: double

EarlyTermination — Enable early termination of LDPC decoding
false (default) | true

Enable early termination of LDPC decoding, specified as a logical. This parameter is
applicable when channel coding is set to LDPC for the user of interest.

* When set to false, LDPC decoding completes the number of iterations specified by
MaximumLDPCIterationCount, regardless of parity check status.
* When set to true, LDPC decoding terminates when all parity-checks are satisfied.

For information on channel coding options, see the 802.11 format configuration object of
interest.

wlanHEDataBitRecover

Output Arguments

dataBits — Recovered information bits in the HE data field
1|0 int8 column vector

Recovered information bits from the HE data field, returned as an int8 column vector of
length 8 x PSDULength. You can determine the PSDU length by using getPSDULength.

Data Types: int8

Definitions

HE Data Field

The Data field of the HE PPDU contains data for one or more users.

HE Format PPDU
Legacy Preamble HE Preamble Data

DATA PE

‘Variable durations
per HE-LTF symbol

As described in IEEE802.11ax™/D2.0, the number of OFDM symbols in the HE Data field
is determined by the Length field in L-SIG (see Equation (28-11)), the preamble duration
and the settings of the GI+LTF Size, Pre-FEC Padding Factor, and PE Disambiguity fields
in the HE-SIG-A field (see 28.3.10.7 (HE-SIG-A)).

* Data symbols in an HE PPDU use a discrete Fourier transform (DFT) period of 12.8 ps
and subcarrier spacing of 78.125 kHz.

* Data symbols in an HE PPDU support guard interval durations of 0.8 us, 1.6 ps, and
3.2 ps.

» HE PPDUs have single stream pilots in the Data field.
When BCC encoding is used, the Data field consists of the SERVICE field, the PSDU, the

pre-FEC PHY padding bits, the tail bits, and the post-FEC padding bits. Packet extension
is assumed to be zero.

1-121

1 Functions — Alphabetical List

1-122

When LDPC encoding is used, the Data field consists of the SERVICE field, the PSDU, the
pre-FEC PHY padding bits, the post-FEC padding bits, and the packet extension. No tail
bits are present when LDPC encoding is used.

For more information, see “WLAN Packet Structure” and “Build HE PPDU”.

References

[1] IEEE Std P802.11ax™/D2.0 Draft Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 6: Enhancements for High Efficiency WLAN.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHEMUConfig | wlanHESUConfig | wlanRecoveryConfig

Introduced in R2018b

wlanHTLTFChannelEstimate

wlanHTLTFChannelEstimate

Channel estimation using HT-LTF

Syntax

chEst
chEst

wlanHTLTFChannelEstimate(demodSig, cfg)
wlanHTLTFChannelEstimate(demodSig, cfg, span)

Description

chEst = wlanHTLTFChannelEstimate(demodSig, cfg) returns the channel estimate
using the demodulated “HT-LTF” on page 1-129* signal, demodSig, given the parameters
specified in configuration object cfg.

chEst = wlanHTLTFChannelEstimate(demodSig, cfg, span) returns the channel
estimate and specifies the span of a moving-average filter used to perform frequency
smoothing.

Examples

Estimate SISO Channel Using HT-LTF

Estimate and plot the channel coefficients of an HT-mixed format channel by using the
high throughput long training field.

Create an HT format configuration object. Generate the corresponding HT-LTF based on
the object.

cfg = wlanHTConfig;
txSig = wlanHTLTF(cfg);

4, IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1-123

1 Functions — Alphabetical List

Multiply the transmitted HT-LTF signal by 0.2 + 0.1i and pass it through an AWGN
channel. Demodulate the received signal.

rxSig = awgn(txSig*(0.2+0.1i),30);
demodSig = wlanHTLTFDemodulate(rxSig,cfg);

Estimate the channel response using the demodulated HT-LTFE.
est = wlanHTLTFChannelEstimate(demodSig,cfg);
Plot the channel estimate.

scatterplot(est)
grid

Scatter plot

0.257]

0.2r -

"f
]

0.1+ =)

0.057 -]

Quadrature
=

0.2 0.1 1] 0.1 0.2
In-Phase

1-124

wlanHTLTFChannelEstimate

The channel estimate matches the complex channel multiplier.

Estimate MIMO Channel Using HT-LTF

Estimate the channel coefficients of a 2x2 MIMO channel by using the high throughput
long training field. Recover the HT-data field and determine the number of bit errors.

Create an HT-mixed format configuration object for a channel having two spatial streams
and four transmit antennas. Transmit a complete HT waveform.

cfg = wlanHTConfig('NumTransmitAntennas',?2,
"NumSpaceTimeStreams',2, 'MCS',11);

txPSDU = randi([0 1],8*cfg.PSDULength,1);

txWaveform = wlanWaveformGenerator (txPSDU,cfg);

Pass the transmitted waveform through a 2x2 TGn channel.

tgnChan = wlanTGnChannel('SampleRate',20e6,
"NumTransmitAntennas', 2,
'"NumReceiveAntennas',2, ...
'LargeScaleFadingEffect', 'Pathloss and shadowing');
rxWaveformNoNoise = tgnChan(txWaveform);

Create an AWGN channel with noise power, nVar, corresponding to a receiver having a 9
dB noise figure. The noise power is equal to kTBF, where k is Boltzmann's constant, T is
the ambient noise temperature (290K), B is the bandwidth (20 MHz), and F is the noise
figure (9 dB).

nVar = 107((-228.6 + 10*logl10(290) + 10*logl0(20e6) + 9)/10);

awgnChan = comm.AWGNChannel('NoiseMethod', 'Variance',
'Variance',nVar);

Pass the signal through the AWGN channel.
rxWaveform = awgnChan(rxWaveformNoNoise);

Determine the indices for the HT-LTE. Extract the HT-LTF from the received waveform.
Demodulate the HT-LTE.

indLTF = wlanFieldIndices(cfg, 'HT-LTF");

rxLTF = rxWaveform(indLTF(1):indLTF(2),:);
1tfDemodSig = wlanHTLTFDemodulate(rxLTF,cfg);

1-125

1 Functions — Alphabetical List

Generate the channel estimate by using the demodulated HT-LTF signal. Specify a
smoothing filter span of three subcarriers.

chEst = wlanHTLTFChannelEstimate(ltfDemodSig,cfg,3);
Extract the HT-data field from the received waveform.

indData = wlanFieldIndices(cfg, 'HT-Data');
rxDataField = rxWaveform(indData(1l):indData(2),:);

Recover the data and verify that there no bit errors occurred.
rxPSDU = wlanHTDataRecover(rxDataField, chEst,nVar,cfg);

numErrs = biterr(txPSDU, rxPSDU)

numgErrs 0

Input Arguments

demodSig — Demodulated HT-LTF signal
3-D array

Demodulated HT-LTF signal, specified as an Ngr-by-Ngyy-by-Ny array. Ngr is the number of
occupied subcarriers, Ngyy is the number of HT-LTF OFDM symbols, and Ny is the
number of receive antennas.

Data Types: double

cfg — Configuration information
wlanHTConfig

Configuration information, specified as a wlanHTConfig object. The function uses the
following wlanHTConfig object properties:

ChannelBandwidth — Channel bandwidth
"CBW20' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20"' or 'CBW40".
Data Types: char | string

1-126

wlanHTLTFChannelEstimate

NumSpaceTimeStreams — Number of space-time streams

1 (default) |23 |4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.
Data Types: double

NumExtensionStreams — Number of extension spatial streams
0 (default) [1|23

Number of extension spatial streams in the transmission, specified as 0, 1, 2, or 3. When
NumExtensionStreams is greater than 0, SpatialMapping must be 'Custom'.
Data Types: double

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 31

Modulation and coding scheme to use for transmitting the current packet, specified as an
integer from 0 to 31. The MCS setting identifies which modulation and coding rate
combination is used, and the number of spatial streams (Ngg).

MCS(Note 1) N (Note 1) Modulation Coding Rate
0, 8,16, or 24 1,2,3,0or4 BPSK 1/2
1,9,17, or 25 1,2,3,0or4 QPSK 1/2
2,10, 18, or 26 1,2,3,0or4 QPSK 3/4
3,11, 19, or 27 1,2,3,0or4 16QAM 1/2
4,12, 20, or 28 1,2,3,0or4 16QAM 3/4
5,13, 21, or 29 1,2,3,0or4 64QAM 2/3
6, 14, 22, or 30 1,2,3,0or4 64QAM 3/4
7,15, 23, or 31 1,2,3,0or4 64QAM 5/6

Note-1 MCS from 0 to 7 have one spatial stream. MCS from 8 to 15 have two spatial
streams. MCS from 16 to 23 have three spatial streams. MCS from 24 to 31 have four
spatial streams.

See IEEE 802.11-2012, Section 20.6 for further description of MCS dependent
parameters.

1-127

1 Functions — Alphabetical List

1-128

When working with the HT-Data field, if the number of space-time streams is equal to the
number of spatial streams, no space-time block coding (STBC) is used. See IEEE
802.11-2012, Section 20.3.11.9.2 for further description of STBC mapping.

Example: 22 indicates an MCS with three spatial streams, 64-QAM modulation, and a 3/4
coding rate.

Data Types: double

span — Filter span
positive odd integer

Filter span of the frequency smoothing filter, specified as an odd integer. The span is
expressed as a number of subcarriers.

Note If adjacent subcarriers are highly correlated, frequency smoothing will result in
significant noise reduction. However, in a highly frequency selective channel, smoothing
may degrade the quality of the channel estimate.

Data Types: double

Output Arguments

chEst — Channel estimate
3-D array

Channel estimate between all combinations of space-time streams and receive antennas,
returned as an Ngr-by-(Ngrs+Ngss)-by-Ny array. Ngr is the number of occupied
subcarriers, Ngrg is the number of space-time streams. Nggg is the number of extension
spatial streams. Ny is the number of receive antennas. Data and pilot subcarriers are
included in the channel estimate.

Data Types: double

wlanHTLTFChannelEstimate

Definitions

HT-LTF

The high throughput long training field (HT-LTF) is located between the HT-STF and data
field of an HT-mixed packet.

Legacy Preamble HT Preamble Data
Service Field
HT- HT-
LTF1 .. LTFN
4us 4ps

As described in IEEE Std 802.11-2012, Section 20.3.9.4.6, the receiver can use the HT-
LTF to estimate the MIMO channel between the set of QAM mapper outputs (or, if STBC
is applied, the STBC encoder outputs) and the receive chains. The HT-LTF portion has one
or two parts. The first part consists of one, two, or four HT-LTFs that are necessary for
demodulation of the HT-Data portion of the PPDU. These HT-LTFs are referred to as HT-
DLTFs. The optional second part consists of zero, one, two, or four HT-LTFs that can be
used to sound extra spatial dimensions of the MIMO channel not utilized by the HT-Data
portion of the PPDU. These HT-LTFs are referred to as HT-ELTFs. Each HT long training
symbol is 4 ps. The number of space-time streams and the number of extension streams
determines the number of HT-LTF symbols transmitted.

Tables 20-12, 20-13 and 20-14 from IEEE Std 802.11-2012 are reproduced here.

Nsrs Determination Ny ¢ Determination Nyre ¢ Determination
Table 20-12 defines the Table 20-13 defines the Table 20-14 defines the
number of space-time number of HT-DLTFs number of HT-ELTFs
streams (Ngrs) based on the |required for the Ngrs. required for the number of
number of spatial streams extension spatial streams
(Ngg) from the MCS and the (Ngss). Ngsg is defined in HT-
STBC field. SIG,.

1-129

1 Functions — Alphabetical List

Ngrs Determination Nyrp 7 Determination Nyre e Determination
Nss STBC |Ngrs Nsrs Nyroire NEss Nyrewre
from field
1 1 0 0
MCS
2 2 1 1
1 0 1
3 4 2 2
! ! 2 4 4 3 4
2 0 2
2 1 3
2 2 4
3 0 3
3 1 4
4 0 4

Additional constraints include:

NHTLTF = NHTDLTF + NHTELTF <5.
. NSTS+NESSS4'

* When Ngr5 = 3, Nggs cannot exceed one.
o If NESS = 1 when NSTS = 3 then NHTLTF = 5.

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems, Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[2] Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac .
2nd Edition, United Kingdom: Cambridge University Press, 2013.

1-130

wlanHTLTFChannelEstimate

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHTConfig | wlanHTLTF | wlanHTLTFDemodulate

Introduced in R2015b

1-131

1 Functions — Alphabetical List

1-132

wlanVHTLTFChannelEstimate

Channel estimation using VHT-LTF

Syntax

chEst
chEst
chEst

wlanVHTLTFChannelEstimate(demodSig, cfg)
wlanVHTLTFChannelEstimate(demodSig, cbw, numSTS)
wlanVHTLTFChannelEstimate(_ ,span)

Description

chEst = wlanVHTLTFChannelEstimate(demodSig, cfg) returns the channel
estimate, using the demodulated “VHT-LTF” on page 1-140° signal, demodSig, given the
parameters specified in wlanVHTConfig object cfg.

chEst = wlanVHTLTFChannelEstimate(demodSig, cbw, numSTS) returns the
channel estimate for the specified channel bandwidth, cbw, and the number of space-time
streams, numSTS.

chEst = wlanVHTLTFChannelEstimate(,span) specifies the span of a moving-
average filter used to perform frequency smoothing.

Examples

Estimate SISO Channel Using VHT-LTF

Display the channel estimate of the data and pilot subcarriers for a VHT format channel
using its long training field.

Create a VHT format configuration object. Generate a VHT-LTF based on cfg.

5. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

wlanVHTLTFChannelEstimate

cfg = wlanVHTConfig;
txSig = wlanVHTLTF(cfg);

Multiply the transmitted VHT-LTF signal by 0.3 - 0.15i and pass it through an AWGN
channel having a 30 dB signal-to-noise ratio. Demodulate the received signal.

rxSig = awgn(txSig*(0.3-0.151i),30);
demodSig = wlanVHTLTFDemodulate(rxSig,cfg);

Estimate the channel response using the demodulated VHT-LTF signal.
est = wlanVHTLTFChannelEstimate(demodSig,cfg);

Plot the channel estimate.

scatterplot(est)
grid

1-133

1 Functions — Alphabetical List

Scatter plot

0.3r1]

0.2r]

Quadrature
]

03 02 01 1] 0.1 02 03
In-Phase

The channel estimate matches the complex channel multiplier.

Estimate MIMO Channel Using VHT-LTF
Estimate and display the channel coefficients of a 4x2 MIMO channel using the VHT-LTE.

Create a VHT format configuration object for a channel having four spatial streams and
four transmit antennas. Transmit a complete VHT waveform.

cfg = wlanVHTConfig('NumTransmitAntennas',4,
"NumSpaceTimeStreams',4, 'MCS',5);
txWaveform = wlanWaveformGenerator([1;0;0;1;1;0]1,cfg);

1-134

wlanVHTLTFChannelEstimate

Set the sampling rate, and then pass the transmitted waveform through a 4x2 TGac
channel.

fs = 80e6;

tgacChan = wlanTGacChannel('SampleRate', fs,
"NumTransmitAntennas', 4, 'NumReceiveAntennas',2);

rxWaveform = tgacChan(txWaveform);

Determine the VHT-LTF field indices and demodulate the VHT-LTF from the received
waveform.

indVHTLTF = wlanFieldIndices(cfg, 'VHT-LTF');
1tfDemodSig = wlanVHTLTFDemodulate(rxWaveform(indVHTLTF(1) :indVHTLTF(2),:), cfg);

Generate the channel estimate by using the demodulated VHT-LTF signal. Specify a
smoothing filter span of five subcarriers.

est = wlanVHTLTFChannelEstimate(ltfDemodSig,cfg,5);

Plot the magnitude response of the first space-time stream for both receive antennas. Due
to the random nature of the fading channel, your results may vary.

plot(abs(est(:,1,1)))

hold on

plot(abs(est(:,1,2)))
xlabel('Subcarrier')
ylabel('Magnitude")

legend('Rx Antenna 1', 'Rx Antenna 2')

1-135

1 Functions — Alphabetical List

14 T T T T
Rx Antenna 1
TN Rx Antenna 2
1271 r i b
1F i
\ TN
S 081 A\]
E II ._’,.-f’
AN
o {1
= 06t [-
X o — f i
. I \ ff,."
I| A d \,_,-": 1 /
0.4 | // pd i
Ly / i
0.2 -,I_k / f_f
S \\H /
D 1 1 1 i
1] 50 100 150 200 250

Subcarrier

Recover VHT-Data Field in MU-MIMO Channel

Recover VHT-Data field bits for a multiuser transmission using channel estimation on a
VHT-LTF field over a quasi-static fading channel.

Create a VHT configuration object having a 160 MHz channel bandwidth, two users, and
four transmit antennas. Assign one space-time stream to the first user and three space-
time streams to the second user.

cbw = 'CBW160';
numSTS = [1 3];

1-136

wlanVHTLTFChannelEstimate

vht = wlanVHTConfig('ChannelBandwidth', cbw, 'NumUsers',?2,
"NumTransmitAntennas',4, 'NumSpaceTimeStreams',numSTS);

Because there are two users, the PSDU length is a 1-by-2 row vector.

psduLen = vht.PSDULength

psdulLen Ix2

1050 3156

Generate multiuser input data. This data must be in the form of a 1-by- N cell array,
where N is the number of users.

txDataBits{1l}
txDataBits{2}

randi([0 1],8*vht.PSDULength(1),1);
randi([0 1],8*vht.PSDULength(2),1);

Generate VHT-LTF and VHT-Data field signals.

tXVHTLTF
txVHTData

wlanVHTLTF(vht);
wlanVHTData(txDataBits,vht);

Pass the data field for the first user through a 4x1 channel because it consists of a single
space-time stream. Pass the second user's data through a 4x3 channel because it consists
of three space-time streams. Apply white Gaussian noise to each user signal.

snr = 15;
H1 1/sqrt(2)*complex(randn(4,1),randn(4,1));
H2 1/sqrt(2)*complex(randn(4,3),randn(4,3));

rxVHTDatal
rxVHTData2

awgn (txVHTData*H1,snr, 'measured');
awgn (txVHTData*H2,snr, 'measured');

Repeat the process for the VHT-LTF fields.

rxVHTLTF

1 awgn (tXVHTLTF*H1,snr, 'measured');
rxVHTLTF2

awgn (tXVHTLTF*H2,snr, 'measured');

Calculate the received signal power for both users and use it to estimate the noise
variance.

powerDB1 = 10*loglO(var(rxVHTDatal));
noiseVarEstl = mean(10.7(0.1*(powerDBl-snr)));

1-137

1 Functions — Alphabetical List

1-138

powerDB2 = 10*loglO(var(rxVHTData2));
noiseVarEst2 = mean(10.7(0.1*(powerDB2-snr)));

Estimate the channel characteristics using the VHT-LTF fields.

demodVHTLTF1 = wlanVHTLTFDemodulate (rxVHTLTF1, cbw, numSTS) ;
chanEstl = wlanVHTLTFChannelEstimate(demodVHTLTF1, cbw, numSTS) ;

demodVHTLTF2 = wlanVHTLTFDemodulate (rxVHTLTF2, cbw, numSTS) ;
chanEst2 = wlanVHTLTFChannelEstimate (demodVHTLTF2, cbw, numSTS) ;

Recover VHT-Data field bits for the first user and compare against the original payload
bits.

rxDataBitsl = wlanVHTDataRecover(rxVHTDatal,chanEstl,noiseVarEstl,vht,1);
[~,berl] = biterr(txDataBits{1l}, rxDataBitsl)

berl = 0.4983

Determine the number of bit errors for the second user.

rxDataBits2 = wlanVHTDataRecover(rxVHTData2,chanEst2,noiseVarEst2,vht,?2);
[~,ber2] = biterr(txDataBits{2}, rxDataBits2)

ber2 = 0.0972

The bit error rates are quite high because there is no precoding to mitigate the
interference between streams. This is especially evident for the user 1 receiver because it
receives energy from the three streams intended for user 2. The example is intended to
show the workflow and proper syntaxes for the LTF demodulate, channel estimation, and
data recovery functions.

Input Arguments

demodSig — Demodulated VHT-LTF signal
3-D array

Demodulated VHT-LTF signal, specified as an Ng;-by-Ngy-by-Ng array. Ngr is the number
of occupied subcarriers, Ngyy is the number of VHT-LTF OFDM symbols, and Ny, is the
number of receive antennas.

Data Types: double

wlanVHTLTFChannelEstimate

cfg — Format configuration
wlanVHTConfig

Format configuration, specified as a wlanVHTConfig object.

cbw — Channel bandwidth
"CBW20' | 'CBW40' | 'CBW8O' | 'CBW160"

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160". If the
transmission has multiple users, the same channel bandwidth is applied to all users.
Data Types: char | string

numSTS — Number of space-time streams
1-by-Nysers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

» For a single user, the number of space-time streams is a scalar integer from 1 to 8.

» For multiple users, the number of space-time streams is a 1-by-Ny,. vector of integers
from 1 to 4, where the vector length, Ny, is an integer from 1 to 4.

Example: [1 3 2] indicates that one space-time stream is assigned to user 1, three
space-time streams are assigned to user 2, and two space-time streams are assigned to
user 3.

Note The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

span — Filter span
positive odd integer

Filter span of the frequency smoothing filter, specified as an odd integer. The span is
expressed as a number of subcarriers.

Note If adjacent subcarriers are highly correlated, frequency smoothing results in
significant noise reduction. However, in a highly frequency-selective channel, smoothing
can degrade the quality of the channel estimate.

1-139

1 Functions — Alphabetical List

1-140

Data Types: double

Output Arguments

chEst — Channel estimate
3-D array

Channel estimate between all combinations of space-time streams and receive antennas,
returned as an Ngr-by-Nsrs 1orqa-by-Ng array. Ngr is the number of occupied subcarriers.
Nsrs totar 1S the total number of space-time streams for all users. For the single-user case,
Nsrstota = Nsrs. Ny is the number of receive antennas. The channel estimate includes
coefficients for both the data and pilot subcarriers.

Data Types: double

Definitions

VHT-LTF

The very high throughput long training field (VHT-LTF) is located between the VHT-STF
and VHT-SIG-B portion of the VHT packet.

Legacy Preamble VVHT Preamble Data
Service Field
VHT- VHT-
LTF1 I LTFN
4 s 4ps

It is used for MIMO channel estimation and pilot subcarrier tracking. The VHT-LTF
includes one VHT long training symbol for each spatial stream indicated by the selected
MCS. Each symbol is 4 ps long. A maximum of eight symbols are permitted in the VHT
LTE

The VHT-LTF is defined in IEEE Std 802.11ac-2013, Section 22.3.8.3.5.

wlanVHTLTFChannelEstimate

References

[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[2] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[3] Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac.
2nd Edition, United Kingdom: Cambridge University Press, 2013.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanVHTConfig | wlanVHTDataRecover | wlanVHTLTFDemodulate

Introduced in R2015b

1-141

1 Functions — Alphabetical List

wlanFieldindices

Generate PPDU field indices

Syntax

ind
ind

wlanFieldIndices(cfg)
wlanFieldIndices(cfg,field)

Description

ind = wlanFieldIndices(cfg) returns a structure, ind, containing the start and
stop indices of the individual component fields that comprise the baseband PPDU
waveform, given a format configuration object.

Note For non-HT format, this function only supports generation of field indices for OFDM
modulation.

ind = wlanFieldIndices(cfg, field) returns the start and stop indices for the
specified field type in the rows of an N-by-2 matrix.

Examples

Extract PPDU Fields From VHT Waveform
Extract the VHT-STF from a VHT waveform.

Create VHT configuration object for a MIMO transmission using a 160 MHz channel
bandwidth. Generate the corresponding VHT waveform.

cfg = wlanVHTConfig('MCS',8, 'ChannelBandwidth', 'CBW160', 'NumTransmitAntennas',2, 'NumSp:
txSig = wlanWaveformGenerator([1;0;0;1],cfg);

Determine the component PPDU field indices for the VHT format.

1-142

wlanFieldIndices

ind

wlanFieldIndices(cfg)

struct with fields:
LSTF: [1 1280]
LLTF: [1281 2560]
LSIG: [2561 3200]
VHTSIGA: [3201 4480]
VHTSTF: [4481 5120]
VHTLTF: [5121 6400]
VHTSIGB: [6401 7040]
VHTData: [7041 8320]

ind

The VHT PPDU waveform is comprised of eight fields, including seven preamble fields
and one data field.

Extract the VHT-STF from the transmitted waveform.
stf = txSig(ind.VHTSTF(1):ind.VHTSTF(2),:);

Verify that the VHT-STF has dimensions of 640-by-2 corresponding to the number of
samples (80 for each 20 MHz bandwidth segment) and the number of transmit antennas.

size(stf)
ans = 1Ix2

640 2

Extract VHT-LTF and Recover VHT Data

Generate a VHT waveform. Extract and demodulate the VHT-LTF to estimate the channel
coefficients. Recover the data field using the channel estimate and use this to determine
the number of bit errors.

Configure a VHT format object with two paths.

vht = wlanVHTConfig('NumTransmitAntennas',2, 'NumSpaceTimeStreams',k2);

Generate a random PSDU and create the corresponding VHT waveform.

1-143

1 Functions — Alphabetical List

txPSDU = randi([0 1],8*vht.PSDULength,1);
txSig = wlanWaveformGenerator (txPSDU,vht);

Pass the signal through a TGac 2x2 MIMO channel.

tgacChan = wlanTGacChannel('NumTransmitAntennas',2, 'NumReceiveAntennas',?2,
'LargeScaleFadingEffect', 'Pathloss and shadowing');
rxSigNoNoise = tgacChan(txSig);

Add AWGN to the received signal. Set the noise variance for the case in which the
receiver has a 9 dB noise figure.

nVar = 10™((-228.6+10*10g10(290)+10*1ogl0(80e6)+9)/10);
awgnChan = comm.AWGNChannel('NoiseMethod', 'Variance', 'Variance',nVar);
rxSig = awgnChan(rxSigNoNoise);

Determine the indices for the VHT-LTF and extract the field from the received signal.

indVHT = wlanFieldIndices(vht, 'VHT-LTF');
rxLTF = rxSig(indVHT (1) :indVHT(2),:);

Demodulate the VHT-LTF and estimate the channel coefficients.

dLTF = wlanVHTLTFDemodulate(rxLTF,vht);
chEst = wlanVHTLTFChannelEstimate(dLTF,vht);

Extract the data field and recover the information bits.

indData = wlanFieldIndices(vht, 'VHT-Data');
rxData rxSig(indData(1l):indData(2),:);
rxPSDU wlanVHTDataRecover(rxData, chEst,nVar,vht);

Determine the number of bit errors.
numErrs = biterr(txPSDU, rxPSDU)

numkErrs = 0

1-144

wlanFieldIndices

Input Arguments

cfg — Transmission format

wlanHESUConfig object | wlanHEMUConfig object | wlanDMGConfig object |
wlanS1GConfig object | wlanVHTConfig object | wlanHTConfig object |
wlanNonHTConfig object

Transmission format, specified as a wlanHESUConfig, wlanHEMUConfig,
wlanDMGConfig, wlanS1GConfig, wlanVHTConfig, wlanHTConfig, or
wlanNonHTConfig configuration object.

Example: txformat = wlanVHTConfig

field — PPDU fieldname
character vector

PPDU fieldname, specified as a character vector. The valid set of field values depends
on the transmission format specified in cfg.

Transmission Format (cfg) Valid Fieldname Values (field)

wlanHESUConfig or wlanHEMUConfig "L-STF', 'L-LTF', 'L-SIG', 'RL-SIG"',
'"HE-SIG-A', '"HE-SIG-B', 'HE-STF',
'"HE-LTF', or 'HE-Data'
wlanDMGConfig ‘DMG-STF', 'DMG-CE', 'DMG-Header',

and 'DMG-Data' are common for all DMG
PHY configurations.

When the wlanDMGConfig property
'TraininglLength' > 0, additional valid
fields include: 'DMG-AGC', 'DMG-
AGCSubfields', 'DMG-TRN', 'DMG-
TRNCE', and 'DMG-TRNSubfields"'.

¢ 'DMG-AGCSubfields' is returned in a
matrix with TrainingLength rows

e 'DMG-TRNCE' is returned in a matrix
with TraininglLength/4 rows

e 'DMG-TRNSubfields' is returned in a
matrix with TrainingLength rows

1-145

1 Functions — Alphabetical List

1-146

Transmission Format (cfg)

Valid Fieldname Values (field)

wlanS1GConfig

'S1G-STF', 'S1G-LTF1', and 'S1G-
Data' are common for all S1G
configurations.

For a 1 MHz, or = 2 MHz short preamble
configuration, additional valid fields include
'S1G-SIG', or 'S1G-LTF2N".

For = 2 MHz long preamble configuration,
additional valid fields include 'S1G-SIG-

A', 'S1G-DSTF', 'S1G-DLTF', or 'S1G-

SIG-B'.

wlanVHTConfig

"L-STF', 'L-LTF', 'L-SIG', 'VHT-SIG-
A', "VHT-STF', '"VHT-LTF', 'VHT-SIG-
B', or 'VHT-Data'

wlanHTConfig

‘L-STF', 'L-LTF', 'L-SIG', 'HT-SIG"',
'"HT-STF', 'HT-LTF', or 'HT-Data’

wlanNonHTConfig

'"L-STF', 'L-LTF', 'L-SIG', or 'NonHT-
Data'

Data Types: char | string

Output Arguments

ind — Start and stop indices

structure | matrix

Start and stop indices, returned as a structure or a matrix. The indices correspond to the
start and stop indices of fields included in the baseband waveform defined by the

specified WLAN format configuration object.

If you specify an input field, the function returns ind as an N-by-2 matrix of uint32
values, consisting of the start and stop indices of the PPDU field.

This table outlines the N dimension of the N-by-2 matrix that is returned based on the

specific format and configuration.

wlanFieldIndices

Format Configuration ind or Specific Field
Dimension
non-HT — 1-by-2 matrix for each field
HT — 1-by-2 matrix for each field
When null data packet empty matrix
(NDP) mode, if PSDULength
=0
VHT and S1G — 1-by-2 matrix for each field
When null data packet empty matrix
(NDP) mode, if APEPLength
=0
HE® — 1-by-2 matrix for each field
When null data packet empty matrix
(NDP) mode, if APEPLength
=0
When a midamble is added |'HE Data' is an R-by-2
to HE Data field to improve |matrix, where R is the
channel estimaes for high |number of data blocks
Doppler scenarios. separated by midamble
periods.
DMG® — 1-by-2 matrix for each field

When the wlanDMGConfig
object property
'TraininglLength' >0

'DMG-AGC' is a 1-by-2
matrix

'DMG-TRN' is a 1-by-2
matrix

'DMG-AGCSubfields' isa
TrainingLength-by-2
matrix

'DMG-TRNSubfields' isa
TrainingLength-by-2
matrix

'DMG-TRNCE' is a
(TrainingLength/4)-by-2
matrix

1-147

1 Functions — Alphabetical List

Format Configuration ind or Specific Field
Dimension
When the wlanDMGConfig |'DMG-AGC' is a 0-by-2
property matrix

'TraininglLength' =0

'DMG-TRN' is a 0-by-2
matrix

'DMG-AGCSubfields' isa
0-by-2 matrix

'DMG-TRNSubfields' isa
0-by-2 matrix

'DMG-TRNCE' is a 0-by-2
matrix

1 Asdescribed in Section 28.3.11.16 of [1], you can add a midamble to the HE Data
field to improve the channel estimates for high Doppler scenarios.

HE Format PPDU

Legacy Preamble

HE Preamble

Data
e | DATA | PE |
Vanable durations
y‘/
- | | e | | Midamble | e | | Midamble
My, Data Symbols My, Data Symbols

Identical copies of the
HE Preamble HE-LTFs

2 For DMG, the 'DMG-AGC" field contains NrysiningLength Subfields, where Nrpiningtengtn 18
0-64 subfields. The 'DMG-TRN' field contains Nryainingrength + (NtrainingLength/4)
subfields. As shown here, the indices for 'DMG-AGC' and 'DMG-TRN' overlap with
the indices of their respective subfields, 'DMG-AGCSubfields' and 'DMG-

TRNSubfields'.

1-148

wlanFieldIndices

Training Subfields

DMG-AGCSubfields DMG-TRNSubfields

| - - _- - - s _1
" |
1

=1 " mwm * 1 = omow I

i |

N SO N O s S

Nagc subfields) Ntgn + Ncg subfields
|-—; e e e e - [e e 7 e e e e iy
1 1 1 |
| o 1
- - A "] |Il_‘:
1<Y2E ‘e z1 {8 eeEye £
- I v [| '
P S N N S [- N N e o d
Nacc subfields = Nriningl ength Nrry subfields = Nrypiningl ength

NCE subfields = NTrainingLength /4

References

[1]1 IEEE Std P802.11ax™/D2.0 Draft Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN

1-149

1 Functions — Alphabetical List

Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 6: Enhancements for High Efficiency WLAN.

[2] IEEE Std 802.11™-2016 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[3] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[4] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[5] IEEE Std 802.11ad™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

1-150

wlanFieldIndices

See Also

Functions
wlanDMGConfig | wlanHEMUConfig | wlanHESUConfig | wlanHTConfig |

wlanNonHTConfig | wlanS1GConfig | wlanVHTConfig

Introduced in R2015b

1-151

1 Functions — Alphabetical List

1-152

wlanFormatDetect

Packet format detection

Syntax

format = wlanFormatDetect(rxSig,chEst,noiseVarEst, cbw)
format wlanFormatDetect(rxSig, chEst,noiseVarEst, cbw, cfgRec)

Description

format = wlanFormatDetect(rxSig,chEst,noiseVarEst, cbw) detects and
returns the packet format for the specified received signal. Inputs include the received
signal, the channel estimate, the noise variance estimate, and the channel bandwidth. For
more information, see “Format Detection Processing” on page 1-158.

format = wlanFormatDetect(rxSig,chEst,noiseVarEst, cbw,cfgRec) uses
cfgRec to specify algorithm options for information bit recovery.

Examples

Detect HT-MF Format Waveform
Perform format detection on a WLAN high throughput mixed format (HT-MF) waveform.

Generate an HT-MF waveform and add noise to the transmitted waveform.

cbw = 'CBW20';

cfgTx = wlanHTConfig('ChannelBandwidth', cbw);
tx = wlanWaveformGenerator([1;0;0;1],cfgTx);
snr = 10;

rxSig = awgn(tx,snr);

wlanFormatDetect

Demodulate Received Signal and Perform Channel Estimation

* Determine indices for the L-LTF for the 20 MHz bandwidth waveform. For this
calculation, define local variables for the sample rate and duration of the L-STF and L-
LTF fields in seconds.

* Demodulate the L-LTE.
* Perform channel estimation using the L-LTE.

* Estimate the noise variance.

sr = 20e6;
Tlstf = 8e-6;
TL1tf = 8e-6;

idx1ltf = Tlstf*sr+(1:Tlltf*sr);

1ltfDemod = wlanLLTFDemodulate(rxSig(idx11ltf,:),cbw);
chEst = wlanLLTFChannelEstimate(11tfDemod, cbw);
noiseVarEst = 10™(-snr/20);

Detect Signal Format

* Determine indices for the three symbols following the L-LTF. For a 20 MHz bandwidth
waveform, the duration for three symbols is 12 H¥,
* Perform format detection.

idxDetectionSymbols = (Tlstf+Tlltf)*sr+(1:12e-6*sr);

in = rxSig(idxDetectionSymbols, :);
format = wlanFormatDetect(in,chEst,noiseVarEst, cbw)

format =
"HT-MF"'

Detect VHT Format Waveform After Adjusting Recovery Algorithm

Perform format detection on a WLAN very high throughput (VHT) waveform. Use the
recovery configuration object to adjust the default recovery algorithm settings.

Generate an VHT waveform and add noise to the transmitted waveform.

1-153

1 Functions — Alphabetical List

1-154

cbw = 'CBW80O';

cfgTx = wlanVHTConfig('ChannelBandwidth"', cbw);
tx = wlanWaveformGenerator([1;0;0;1],cfgTx);
snr = 10;

rxSig = awgn(tx,snr);

Received signal demodulation and channel estimation

* Determine indices for the L-LTF for the 80 MHz bandwidth waveform. For this
calculation, define local variables for the sample rate and duration of the L-STF and L-
LTF fields in seconds.

* Demodulate the L-LTFE.
* Perform channel estimation using the L-LTF.
» Estimate the noise variance.

sr = 80e6;
Tlstf = 8e-6;
TL1ltf = 8e-6;

idx1ltf = Tlstf*sr+(1:Tlltf*sr);

1ltfDemod = wlanLLTFDemodulate(rxSig(idx11ltf,:),cbw);
chEst = wlanLLTFChannelEstimate(11tfDemod, cbw);
noiseVarEst = 10™(-snr/20);

Format detection

* Determine indices for the three symbols following the L-LTF. For an 80 MHz
bandwidth waveform, the duration for three symbols is 12 ¥,

* Adjust the default recovery settings.

* Perform format detection using modified recovery settings.

TdetectionSymbols = 12e-6;

idxDetectionSymbols = (TUlstf+Tlltf)*sr+(1l:TdetectionSymbols*sr);

in = rxSig(idxDetectionSymbols, :);

cfgRec = wlanRecoveryConfig('OFDMSymbolOffset',0.5,...
'PilotPhaseTracking', 'None')

cfgRec =
wlanRecoveryConfig with properties:

OFDMSymbol0ffset: 0.5000

wlanFormatDetect

EqualizationMethod: 'MMSE'
PilotPhaseTracking: 'None'
MaximumLDPCIterationCount: 12
EarlyTermination: 0

format = wlanFormatDetect(in,chEst,noiseVarEst, cbw,cfgRec)

format
"VHT'

Input Arguments

rxSig — Received time-domain signal
matrix

Received time-domain signal containing the three OFDM symbols immediately following
the L-LTFE specified as an Ng-by-Ny matrix. Ng represents the number of time-domain
samples in three OFDM symbols. Ny is the number of receive antennas.

Note If N; is greater than three OFDM symbols, additional samples after the first three
symbols are not used.

Data Types: double
Complex Number Support: Yes

chEst — Channel estimation
matrix | 3-D array

Channel estimation for data and pilot subcarriers based on the L-LTF, specified as a
matrix or array of size Ngr-by-1-by-Ng. Ngp is the number of occupied subcarriers. The
second dimension corresponds to the single transmitted stream in the L-LTFE. If multiple
transmit antennas are used, the single transmitted stream includes the combined cyclic
shifts. Ny is the number of receive antennas.

Data Types: double
Complex Number Support: Yes

noiseVarEst — Noise variance estimate
nonnegative scalar

1-155

1 Functions — Alphabetical List

1-156

Noise variance estimate, specified as a nonnegative scalar.

Data Types: double

cbw — Channel bandwidth
"CBW5' | 'CBW10O' | 'CBW20' | 'CBW40' | 'CBW8O' | 'CBW160'

Channel bandwidth in MHz, specified as 'CBW5', 'CBW10', 'CBW20"', 'CBW40",
"CBW80O"', or 'CBW160".

Data Types: char

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters containing properties used during data recovery, specified as a
wlanRecoveryConfig object. The configurable properties include the OFDM symbol
sampling offset, the equalization method, and the type of pilot phase tracking. If you do
not specify a cfgRec object, the default object property values described in
wlanRecoveryConfig are used in the data recovery.

OFDMSymbol0ffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from O to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbo10ffset =0
represents the start of the cyclic prefix and OFDMSymbol0ffset = 1 represents the end
of the cyclic prefix.

wlanFormatDetect

- Cyclic Prefix (CP)

) Data 4
£ I : B
cP :
A
OFDMSymbolOffset =X * Rx FFT
Minimum OFDMSymbolOffset =0 Rx FFT
Maximum OFDMSymbolOffset =1 | 1 | Rx FFT

Data Types: double

EqualizationMethod — Equalization method
"MMSE"' (default) | ' ZF'

Equalization method, specified as 'MMSE"' or 'ZF'.

* 'MMSE' indicates that the receiver uses a minimum mean square error equalizer.
* 'ZF' indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'
Data Types: char | string

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

* 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

* 'None' — Pilot phase tracking does not occur.

Data Types: char | string

1-157

1 Functions — Alphabetical List

1-158

Output Arguments

format — Packet format
"Non-HT' | "HT-MF' | "HT-GF' | 'VHT'

Packet format, returned as 'Non-HT', 'HT-MF', 'HT-GF', or 'VHT"'.

Algorithms

Format Detection Processing

The format detection processing algorithm determines the packet format by detecting the
modulation scheme of three symbols. Specifically, the input waveform, rxSig, should
include three symbols, beginning with the first sample of the fifth symbol and ending with
the last sample of the seventh symbol. Additional samples after the last sample of symbol
seven are not used.

» If the packet is non-HT, HT-MF, or VHT format, these are the three symbols following
the L-LTF symbol.

» If the packet is HT-GF format, these are the three symbols following the HT-LTF1
symbol.

wlanFormatDetect

Packet
Format
non-HT L-STF L-LTF L:si¢ Modulation Scheme
BPSK QBPSK
HT-MF L-STF L-LTF L-SIG HT-S81G1 | HT-SIG2
HT-GF HT-STF HT-LTF1 HT-SIG1 | HT-51G2
VHT- VHT-
VHT L-STF L-LTF L-SIG SICA1 SICA2
frst i second trd : fourth fifth sixih seventh
symbol i symbal symbol i symbol symbol symbaol symbaol
(sym0) (sym{} {sym2)
symbaols input to wianFormatDetect

Prior to demodulating any packet symbols, the wlanFormatDetect function checks the
channel bandwidth input. If the channel bandwidth is 5 MHz or 10 MHz, the algorithm
processing concludes and the function returns non-HT as the detected packet format.
The channel estimate, noise variance estimate, and channel bandwidth are used in the
recovery of L-SIG field bits from the fifth symbol, and in the demodulation and
equalization of the sixth and seventh symbols.

The logic associated with format detection confirms the modulation scheme by using
three consecutive symbols, beginning with the first signaling symbol (L-SIG or HT-SIG1)
in sequence. As shown, the packet format prediction is made based on which symbols are
BPSK or QBPSK modulated. This logic flow chart identifies the fifth, sixth, and seventh
symbols of the packet as sym0, sym1, and sym2, respectively.

1-159

1 Functions — Alphabetical List

1-160

wlanFormatDetect

» If sym0 is QBPSK, the packet format is HT-GE.

» If sym0 is BPSK and the L-SIG parity check fails, a warning is issued. The format
detection processing continues because the L-SIG parity check does not conclusively
indicate an error in the MCS determination.

+ Ifthe MCS is not zero, the packet format is non-HT.
+ If the MCS is zero, the modulation scheme of sym1 is detected.

« Ifsyml is QBPSK, the packet format is HI-MF.
» Ifsyml is BPSK, sym2 is detected.

+ Ifsym2 is QBPSK, the packet format is VHT.
» Ifsym2 is BPSK, the packet format is non-HT.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

wlanLLTFChannelEstimate | wlanLSIGRecover | wlanRecoveryConfig

Introduced in R2016b

1-161

1 Functions — Alphabetical List

wlanGolaySequence

Generate Golay sequence

Syntax

[Ga,Gb] = wlanGolaySequence(len)

Description

[Ga,Gb] = wlanGolaySequence(len) returns the Golay sequences Ga and Gb for a
specified sequence length. The sequences are defined in IEEE 802.11ad-2012, Section
21.11.

Examples

Generate Golay Sequences
Generate complementary 32-length Golay sequences.
[Ga,Gb] = wlanGolaySequence(32);

The sum of the autocorrelations is a dirac delta function.

figure
stem(xcorr(Ga)+xcorr(Gb))

1-162

wlanGolaySequence

TD T T T T T T

80

30r

20

—1'} i i i i i i

Input Arguments

len — Sequence length
3264|128

Sequence length, specified as 32, 64, or 128.
Data Types: double

70

1-163

1 Functions — Alphabetical List

Output Arguments

Ga — Golay sequence
column vector of integers

Golay sequence, returned as a column vector of integers of length len.

Gb — Complementary Golay sequence
column vector of integers

Complementary Golay sequence, returned as a column vector of integers of length len.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanDMGConfig | wlanDMGDataBitRecover

Introduced in R2017b

1-164

wlanHEMUConfig

wlanHEMUConfig

Create multiuser HE format configuration object

Syntax

cfgHEMU
cfgHEMU

wlanHEMUConfig(AllocationIndex)
wlanHEMUConfig(AllocationIndex,Name,Value)

Description

cfgHEMU = wlanHEMUConfig(AllocationIndex) creates a configuration object that
initializes parameters for a multiuser IEEE 802.11 high efficiency (HE) format “PPDU” on
page 1-182. For a detailed description of the WLAN HE format, see IEEE 802.11ax [1].

cfgHEMU = wlanHEMUConfig(AllocationIndex,Name,Value) creates a multiuser
HE format configuration object that overrides the default settings using one or more
Name, Value pair arguments.

Some of the wlanHEMUConfig object properties are read-only or can be set only during
object creation using name-value pairs. See wlanHEMUConfig Properties for the
complete set of wlanHEMUConfig object properties.

At runtime, the calling function validates object settings for properties relevant to the
operation of the function.

Examples

Create Multiuser HE Configuration Object

Create a 20 MHz multiuser HE configuration object with the allocation index set to 0. An
allocation index of 0 specifies nine 26-tone RUs in a 20 MHz channel.

cfgMU = wlanHEMUConfig(0);
for i=l:numel(cfgMU.User)

1-165

1 Functions — Alphabetical List

% Set the APEPLength of each user
cfgMU.User{i}.APEPLength = 100;
end

Display the configuration object properties for the fourth user.
cfgMU.User{4}

ans =
wlanHEMUUser with properties:

APEPLength: 100
MCS: 0
NumSpaceTimeStreams: 1
DCM: O
ChannelCoding: 'LDPC'
STAID: 0O

Read-only properties:
RUNumber: 4

Create Multiuser HE Object Using Binary Allocation Indexing

Create a 40 MHz HE configuration with an allocation index of 11000000 used for each 20
MHz subchannel. This configuration specifies two 242-tone RUs, each with one user.

cfgMU = wlanHEMUConfig(["11000000" "11000000"]);
cfgMU.NumTransmitAntennas = 2;

Configure the first RU and the first user.
cfgMU.RU{1}.SpatialMapping = 'Direct’';
cfgMU.User{1}.APEPLength = 1le3;
cfgMU.User{1}.MCS = 2;

cfgMU.User{1}.NumSpaceTimeStreams = 2;
cfgMU.User{1}.ChannelCoding = 'LDPC"';

Configure the second RU and the second user.

cfgMU.RU{2}.SpatialMapping = 'Fourier"';
cfgMU.User{2}.APEPLength = 500;

1-166

wlanHEMUConfig

cfgMu.User{2}.MCS = 3;

cfgMU.User{2}.NumSpaceTimeStreams = 1;
cfgMU.User{2}.ChannelCoding = 'LDPC"';

Display the configuation object properties for both RUs and both users.

cfgMu
cfgMu =

wlanHEMUConfig with properties:

RU:

User:
NumTransmitAntennas:
STBC:
GuardInterval:
HELTFType:
SIGBMCS:

SIGBDCM:
UplinkIndication:
BSSColor:
SpatialReuse:
TXOPDuration:
HighDoppler:

Read-only properties:
ChannelBandwidth:
AllocationIndex:

cfgMU.RU{1:2}

ans =

{[1x1 wlanHEMURU] [1x1 wlanHEMURU]}
{[1x1 wlanHEMUUser] [1x1 wlanHEMUUser]}

.2000

O OO OOCOOPR,RWON

'CBw40'
[192 192]

wlanHEMURU with properties:

PowerBoostFactor: 1

SpatialMapping: 'Direct'

Read-only properties:
Size: 242

Index: 1
UserNumbers: 1

ans =

wlanHEMURU with properties:

1-167

1 Functions — Alphabetical List

PowerBoostFactor: 1

SpatialMapping: 'Fourier'’

Read-only properties:

Size: 242

Index: 2
UserNumbers: 2

cfgMU.User{1:2}

ans =

wlanHEMUUser with properties:

APEPLength:

MCS:
NumSpaceTimeStreams:
DCM:

ChannelCoding:
STAID:

Read-only properties:
RUNumber:

ans =

1000

wlanHEMUUser with properties:

APEPLength:

MCS:
NumSpaceTimeStreams:
DCM:

ChannelCoding:
STAID:

Read-only properties:
RUNumber:

1-168

500

wlanHEMUConfig

Demonstrate SIGB Compression in Multiuser HE Waveforms
HE MU-MIMO Configuration With SIGB Compression

Generate a full bandwidth HE MU-MIMO configuration at 20MHz bandwidth with SIGB
compression. All three users are on a single content channel, which includes only the user
field bits.

cfgHE = wlanHEMUConfig(194);
cfgHE.NumTransmitAntennas = 3;

Create PSDU data for all users.

psdu = cell(1l,numel(cfgHE.User));
psduLength = getPSDULength(cfgHE);
for j = l:numel(cfgHE.User)
psdu = randi([0 1],psduLength(j)*8,1, 'int8"');
end

Generate and plot the waveform.

y = wlanWaveformGenerator(psdu,cfgHE);
plot(abs(y))

1-169

1 Functions — Alphabetical List

2.5 T T T T T T T T

o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Generate a full bandwidth HE MU-MIMO waveform at 80MHz bandwidth with SIGB
compression. HE-SIG-B content channel 1 has four users. HE-SIG-B content channel 2
has three users.

cfgHE = wlanHEMUConfig(214);
cfgHE.NumTransmitAntennas = 7;

Create PSDU data for all users.

psdu = cell(1l,numel(cfgHE.User));
psduLength = getPSDULength(cfgHE);
for j = 1l:numel(cfgHE.User)
psdu = randi([0 1],psduLength(j)*8,1,'int8"');
end

1-170

wlanHEMUConfig

Generate and plot the waveform.

y = wlanWaveformGenerator(psdu,cfgHE);
plot(abs(y));

1.8 T T T T T T T T

16 4

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

HE MU-MIMO Configuration Without SIGB Compression

Generate a full bandwidth HE MU-MIMO configuration at 20MHz bandwidth without
SIGB compression. All three users are on a single content channel, which includes both
common and user field bits.

cfgHE = wlanHEMUConfig(194);

%cfgHE.SIGBCompression = false;
cfgHE.NumTransmitAntennas = 3;

1-171

1 Functions — Alphabetical List

Create PSDU data for all users.

psdu = cell(1l,numel(cfgHE.User));
psduLength = getPSDULength(cfgHE);
for j = 1l:numel(cfgHE.User)
psdu = randi([0 1],psduLength(j)*8,1, 'int8"');
end

Generate and plot the waveform.

y = wlanWaveformGenerator(psdu,cfgHE);
plot(abs(y))

2.5 T T T T T T T T

o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Generate an 80 MHz HE-MU waveform for six users without SIGB compression. HE-SIG-B
content channel 1 has four users. HE-SIG-B content channel 2 has two users.

1-172

wlanHEMUConfig

cfgHE = wlanHEMUConfig([202 114 192 193]);
cfgHE.NumTransmitAntennas = 6;
for i = l:numel(cfgHE.RU)

cfgHE.RU{i}.SpatialMapping = 'Fourier’;

end
Create PSDU data for all users.

psdu = cell(1l,numel(cfgHE.User));
psduLength = getPSDULength(cfgHE);
for j = l:numel(cfgHE.User)

psdu = randi([0 1],psduLength(j)*8,1,'int8');

end

Generate and plot the waveform.

y = wlanWaveformGenerator(psdu,cfgHE);
plot(abs(y));

1-173

1 Functions — Alphabetical List

2.5 T T T T

L_L o AN TIPS NN T Y T AT R AT

0 0.5 1 15 2 25
%104

Generate a full bandwidth HE MU-MIMO waveform at 80MHz bandwidth without SIGB
compression. HE-SIG-B content channel 1 has seven users. HE-SIG-B content channel 2
has no users.

cfgHE = wlanHEMUConfig([214 115 115 115]);
cfgHE.NumTransmitAntennas = 7;

Create PSDU data for all users.

psdu = cell(1l,numel(cfgHE.User));
psduLength = getPSDULength(cfgHE);
for j = 1l:numel(cfgHE.User)
psdu = randi([0 1],psduLength(j)*8,1,'int8"');
end

1-174

wlanHEMUConfig

Generate and plot the waveform.

y = wlanWaveformGenerator(psdu,cfgHE);
plot(abs(y))

1.5 T T T T T T T T T

0 02 04 06 08 1 12 14 16 18 2
x 104

Create Multiuser HE Object for Three Users in One RU with SIG-B Compression

Create an 80 MHz MU-MIMO configuration with three users in a single RU with SIG-B
compression. Display the configuration object properties.

cfgMU = wlanHEMUConfig(210);
cfgMU.NumTransmitAntennas = 3;

1-175

1 Functions — Alphabetical List

1-176

cfgMU.User{1}.NumSpaceTimeStreams
cfgMU.User{2}.NumSpaceTimeStreams
cfgMU.User{3}.NumSpaceTimeStreams

disp(cfgMu)

[|
[

wlanHEMUConfig with properties:

RU:

User:
NumTransmitAntennas:
STBC:
GuardInterval:
HELTFType:
SIGBMCS:

SIGBDCM:
UplinkIndication:
BSSColor:
SpatialReuse:
TXOPDuration:
HighDoppler:

Read-only properties:
ChannelBandwidth:
AllocationIndex:

{[1x1 wlanHEMURU]}
{1x3 cell}

.2000

O OO OOOP,,WOW

'CBW8O'
210

Create Multiuser HE Object Using Upper Center 26-Tone RU

Create a 160 MHz configuration using the upper center 26-tone RU. A total of four RUs
are created. The RU tone assignments are 996, 484, 484, and 26. One user is allocated to
each RU. The last RU created is the center 26-tone RU. Display the configuration

properties of the object.

cfgMU = wlanHEMUConfig([208 115 115 115 200 114 114 200],
"UpperCenter26ToneRU"', true);

cfgMU.RU{:}

ans =

wlanHEMURU with properties:

PowerBoostFactor: 1

SpatialMapping: 'Direct’

wlanHEMUConfig

Read-only properties:
Size: 996

Index: 1

UserNumbers: 1

ans =
wlanHEMURU with properties:

PowerBoostFactor: 1
SpatialMapping: 'Direct’

Read-only properties:
Size: 484

Index: 3

UserNumbers: 2

ans =
wlanHEMURU with properties:

PowerBoostFactor: 1
SpatialMapping: 'Direct’

Read-only properties:
Size: 484

Index: 4

UserNumbers: 3

ans =
wlanHEMURU with properties:

PowerBoostFactor: 1
SpatialMapping: 'Direct’

Read-only properties:
Size: 26

Index: 56
UserNumbers: 4

1-177

1 Functions — Alphabetical List

1-178

Input Arguments

AllocationIndex — Resource unit allocation index
integer | vector of integers | . . .

Resource unit (RU) allocation index, specified by one, two, four, or eight integer values in
the range [0,223]. You can specify this value as an integer, a vector of integers, a string
array, a character vector, or a cell array of character vectors. The format in which you
specify these indices depends on how many of them you are specifying.

» Specify a single allocation index using one integer in either of these forms:

* An integer scalar
* An 8-bit binary sequence specified as a string or character vector
* Specify a multiple allocation indices using two, four, or eight integer values any of
these forms:
* A vector of integers
* An 8-bit binary sequences specified as a string array
* An 8-bit binary sequences specified as a cell array of character vectors

The allocation defines the number of RUs, the size of each RU, and the number of users
assigned to each RU. For more information, see “OFDMA Allocation Index”.

Note This property is read-only after the object is created.

Data Types: double | char | string | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: [200 114 114 200], 'LowerCenter26ToneRU', true specifies an 80 MHz
bandwidth allocation, for three users on three RUs, that uses the lower center 26 tones
on the last RU.

wlanHEMUConfig

LowerCenter26ToneRU — Enable lower center 26-tone RU allocation signaling
false (default) | true

Enable lower center 26-tone RU allocation signaling, specified as a logical value. Using
name-value pairs when the object is created, specify LowerCenter26ToneRU,true to
enable the lower frequency center 26-tone RU. This property can be set during object
creation only.

Dependencies

This property applies only when the AllocationIndex property defines a channel
bandwidth of 80 MHz or 160 MHz and does not specify a full bandwidth allocation.

Data Types: logical

UpperCenter26ToneRU — Enable upper center 26-tone RU allocation signaling
false (default) | true

Enable upper center 26-tone RU allocation signaling, specified as a logical value. Using
name-value pairs when the object is created, specify UpperCenter26ToneRU,true to
enable the upper frequency center 26-tone RU. This property can be set during object
creation only.

Dependencies

This property applies only when the AllocationIndex property defines a channel
bandwidth of 80 MHz or 160 MHz and does not specify a full bandwidth allocation.

Data Types: Logical

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer in the range [1, 8]

Number of transmit antennas, specified as an integer in the range [1, 8].

Data Types: double

STBC — Enable space-time block coding
false (default) | true

Enable space-time block coding (STBC) of the PPDU data field for all users, specified as a

logical value. STBC transmits multiple copies of the data stream across assigned
antennas.

1-179

1 Functions — Alphabetical List

1-180

* When set to false, STBC is not applied to the data field, and the number of space-
time streams is equal to the number of spatial streams.

* When set to true, STBC is applied to the data field, and the number of space-time
streams is double the number of spatial streams.

Dependencies
This property applies only when all of these conditions are satisfied:

* The NumSpaceTimeStreams property is 2.
» The DCM property is false for all users.
* No RU specifies MU-MIMO.

Data Types: logical

GuardInterval — Cyclic prefix length for data field within packet
3.2 (default) | 1.6 | 0.8

Cyclic prefix length, in microseconds, for the data field within a packet, specified as 3.2,
1.6,0r0.8.
Data Types: double

HELTFType — HE-LTF compression mode of HE PPDU
4 (default) | 2 | 1

HE-LTF compression mode of HE PPDU, specified as 4, 2 or 1. This value corresponds
four times, two times, or one times HE-LTF duration compression mode, respectively. The
HE-LTF type is enumerated in Table 28-1 of IEEE 802.11ax/D2.0 as:

* Ix HE-LTF — For 3.2 ps with a guard interval duration of 0.8 us or 1.6us

* 2x HE-LTF — For 6.4 ps with a guard interval duration of 0.8 us or 1.6 us

* 4x HE-LTF — For 12.8 ps with a guard interval duration of 0.8 us or 3.2 us

Data Types: double

SIGBMCS — Modulation and coding scheme for HE-SIG-B field
0 (default) | integer in the range [0, 5]

Modulation and coding scheme for the HE-SIG-B field, specified as an integer in the
range [0, 5].

wlanHEMUConfig

Data Types: double

SIGBDCM — Enable DCM for HE-SIG-B field
false (default) | true

Enable DCM for the HE-SIG-B field, specified as a logical value.
Dependencies

This property applies only when the MCS property is 0, 1, 3, or 4.
Data Types: logical

UplinkIndication — Uplink indication
false (default) | true

Uplink indication, specified as false or true. Specify false to indicate that the PPDU is
sent on a downlink transmission. Specify true to indicate that the PPDU is sent on an
uplink transmission.

Data Types: logical

BSSColor — Basic service set color identifier
0 (default) | integer in the range [0, 63]

Basic service set (BSS) color identifier, specified as an integer in the range [0, 63].

Data Types: double

SpatialReuse — Spatial reuse indication
0 (default) | integer in the range [0, 15]

Spatial reuse indication, specified as an integer in the range [0, 15].

Data Types: double

TXOPDuration — Duration information for TXOP protection
127 (default) | integer in the range [0, 127]

Duration information for TXOP protection, specified as an integer in the range [0, 127].

Data Types: double

HighDoppler — High Doppler mode indication
false (default) | true

1-181

1 Functions — Alphabetical List

1-182

High Doppler mode indication, specified as a logical value. Set this property to true to
indicate high Doppler in HE-SIG-A.

Dependencies

The true value for this property is valid only when the NumSpaceTimeSt reams property
is less than or equal to 4 for any RU.

Data Types: logical

MidamblePeriodicity — HE-data field midamble periodicity
10 (default) | 20

HE-data field midamble periodicity in the number of OFDM symbols, specified as 10 or
20.

Dependencies

This property applies only when the HighDoppler property is true.
Data Types: double

Output Arguments

cfgHEMU — Multiuser HE PPDU configuration
wlanHEMUConfig object

Multiuser HE “PPDU” on page 1-182 configuration, returned as a wlanHEMUConfig
object. The properties of cfgHEMU are described in wlanHEMUConfig Properties.

Definitions

PPDU

The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

wlanHEMUConfig

References

[1] IEEE Std P802.11ax™/D2.0 Draft Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 6: Enhancements for High Efficiency WLAN.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

Functions
getPSDULength | ruInfo | wlanDMGConfig | wlanHESUConfig | wlanHTConfig |
wlanNonHTConfig | wlanS1GConfig | wlanVHTConfig | wlanWaveformGenerator

Topics
“OFDMA Allocation Index”

Introduced in R2018b

1-183

1 Functions — Alphabetical List

1-184

wlanHESUConfig

Create single user HE format configuration object

Syntax

cfgHESU
cfgHESU

wlanHESUConfig
wlanHESUConfig(Name,Value)

Description

cfgHESU = wlanHESUConfig creates a configuration object that initializes parameters
for a single user IEEE 802.11 high efficiency (HE) format “PPDU” on page 1-193. For a
detailed description of the WLAN HE format, see IEEE 802.11ax [1].

cfgHESU = wlanHESUConfig(Name,Value) creates a single user HE format
configuration object that overrides the default settings using one or more Name, Value
pair arguments.

At runtime, the calling function validates object settings for properties relevant to the
operation of the function.

Examples

Create Single User HE Configuration Object

Create an HE single user configuration object for a 40MHz channel bandwidth. Display
the configuration object properties.

cfgHE = wlanHESUConfig;
cfgHE.ChannelBandwidth = 'CBW40';
disp(cfgHE)

wlanHESUConfig with properties:

wlanHESUConfig

ChannelBandwidth: 'CBW40'
NumTransmitAntennas: 1
NumSpaceTimeStreams: 1

SpatialMapping: 'Direct’
PreHESpatialMapping:
STBC:
MCS:
DCM:
ChannelCoding: 'LDPC'
APEPLength: 100
GuardInterval: 3.2000
HELTFType: 4
UplinkIndication: 0O
BSSColor: 0
SpatialReuse: 0
TXOPDuration: 1
HighDoppler: 0

Create Single User HE Configuration Object for Extended Range Packet Format

Create an HE extended range single user configuration object for a 20MHz channel
bandwidth. Display the configuration object properties.

cfgHE = wlanHESUConfig('ExtendedRange',true);
disp(cfgHE)

wlanHESUConfig with properties:

ChannelBandwidth:
ExtendedRange:
Upperl06ToneRU:
NumTransmitAntennas:
NumSpaceTimeStreams:
SpatialMapping:

'CBW20'
1
0
1
1
PreHESpatialMapping: O
0
0
0

Direct'

STBC:
MCS:

DCM:
ChannelCoding: 'LDPC'
APEPLength: 100
GuardInterval: 3.2000
HELTFType: 4

1-185

1 Functions — Alphabetical List

1-186

UplinkIndication:
BSSColor:
SpatialReuse:
TXOPDuration:
HighDoppler:

ol NoNoNG]

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'ExtendedRange’,true, 'MCS', 2 specifies an extended range single user
HE format packet with the modulation and coding scheme set to 2.

ChannelBandwidth — Channel bandwidth
"CBW20"' (default) | 'CBW40"' | 'CBW8O"' | 'CBW160"

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. The default
value of 'CBW20' sets the channel bandwidth to 20 MHz.

Data Types: char | string

ExtendedRange — Enable extended range single user format
false (default) | true

Enable extended range single user (SU) format, specified as a logical value. Set this
property to true to generate the HE extended range single user format packet.

Dependencies

This property applies only when you set the ChannelBandwidth property to ' CBW20"'.
Data Types: logical

Upperl06ToneRU — Enable higher frequency 106 RU tone
false (default) | true

wlanHESUConfig

Enable higher frequency 106 RU tone, specified as a logical value. Set this property to
true to indicate that only the higher frequency 106 tone resource unit (RU) within the
primary 20MHz channel bandwidth of an extended range single user transmission is
used.

Dependencies

This property applies only when the ChannelBandwidth property is 'CBW20' and the
ExtendedRange property is true.

Data Types: Llogical

NumTransmitAntennas — Number of transmit antennas

1 (default) | integer in the range [1, 8]

Number of transmit antennas, specified as an integer in the range [1, 8].

Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer

Number of space-time streams (Ngpg) in the transmission, specified as a scalar in the
range [1,8].
Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
"Custom'. The default value 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

Data Types: char | string

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
rotate and scale the output vector of the constellation mapper. The spatial mapping
matrix is used for beamforming and mixing space-time streams over the transmit
antennas.

1-187

1 Functions — Alphabetical List

1-188

* When specified as a scalar, that scalar value applies to all the subcarriers.

* When specified as a matrix, its size must be Ngrg -by-N;. Where Ngpg is the number of
space-time streams, and Nr is the number of transmit antennas. The spatial mapping
matrix applies to all the subcarriers.

* When specified as a 3-D array, its size must be Ngr-by-Ngrs-by-Nt. Ngr is the number of
occupied subcarriers, as determined by ChannelBandwidth. Ngrg is the number of
space-time streams. Ny is the number of transmit antennas. In this case, each data and
pilot subcarrier can have its own spatial mapping matrix.

The table shows the ChannelBandwidth setting and the corresponding Ngr.

ChannelBandwidth Nsr
'CBW20' 242
'CBW40' 484
'CBW80' 996
'CBW160' 1992, configured as 2-by-996

Each occupied subcarrier can have its own spatial mapping matrix.

The calling function normalizes the spatial mapping matrix for each subcarrier.

Example: [0.5 0.3; 0.4 0.4; 0.5 0.8] represents a spatial mapping matrix with
three space-time streams and two transmit antennas.

Dependencies

This property applies only when the SpatialMapping property is set to 'Custom'.
Data Types: double
Complex Number Support: Yes

Beamforming — Enable signalling of transmission with beamforming
true (default) | false

Enable signalling of a transmission with beamforming, specified as a logical value.
Beamforming is signalled when this property is set to true. The
SpatialMappingMatrix property specifies the beamforming steering matrix.

Dependencies

This property applies only when the SpatialMapping property is set to 'Custom'.

wlanHESUConfig

Data Types: logical

PreHESpatialMapping — Enable spatial mapping of pre-HE-STF portion
false (default) | true

Enable spatial mapping of the pre-HE-STF portion, specified as a logical value. Specify
true to spatially map the pre-HE-STF portion of the PPDU in the same way as the first
symbol of the HE-LTF field on each tone. Specify false to apply no spatial mapping to
the pre-HE-STF portion of the PPDU.

Data Types: logical

STBC — Enable space-time block coding
false (default) | true

Enable space-time block coding (STBC) of the PPDU data field, specified as a logical
value. STBC transmits multiple copies of the data stream across assigned antennas.

* When set to false, STBC is not applied to the data field, and the number of space-
time streams is equal to the number of spatial streams.

* When set to true, STBC is applied to the data field, and the number of space-time
streams is double the number of spatial streams.

Dependencies

This property applies only when the NumSpaceTimeSt reams property is 2 and the DCM
property is false.

Data Types: logical

MCS — Modulation and coding scheme
0 (default) | in the range [0, 11]

Modulation and coding scheme (MCS) used in transmitting the current packet, specified
as a integer in the range [0, 11].

MCS Modulation Dual carrier Coding Rate
Modulation (DCM)
0 BPSK Oorl 1/2
QPSK Oorl 1/2
2 Not applicable 3/4

1-189

1 Functions — Alphabetical List

MCS Modulation Dual carrier Coding Rate
Modulation (DCM)
3 16-QAM Oorl 1/2
4 3/4
5 64-QAM Not applicable 2/3
6 3/4
7 5/6
8 256-QAM 3/4
9 5/6
10 1024-QAM 3/4
11 5/6

For ExtendedRange, only

Dependencies

* When ExtendedRange is true, only MCS settings 0, 1, and 2 are valid.
* When Upperl06ToneRU is true, only MCS setting 0 is valid.

Data Types: double

DCM — Enable dual carrier modulation for HE-data field
false (default) | true

Enable dual carrier modulation (DCM) for HE-data field, specified as a logical value.
Dependencies
DCM can only be used when all of these conditions are satisfied:

* The MCS property is 0, 1, 3, or 4.
* The STBC property is not used.
* The NumSpaceTimeStreams property is less than or equal to 2.

Data Types: logical

ChannelCoding — Type of forward error correction coding
"LDPC' (default) | 'BCC"

1-190

wlanHESUConfig

Type of forward error correction coding for the data field, specified as ' LDPC' for low-
density parity-check coding or 'BCC' for binary convolutional coding.

Dependencies

The 'BCC' value for ChannelCoding is valid only when all of these conditions are
satisfied:

* The MCS property is not 10 or 11.
* The RU property is less than or equal to 242.
* The NumSpaceTimeStreams property is less than or equal to 4.

Data Types: char | string

APEPLength — Number of bytes in the A-MPDU pre-EOF padding
100 (default) | nonnegative integer

Number of bytes in the A-MPDU pre-EOF padding, specified as a nonnegative integer in
the rangel [0, 6500531].

APEPLength is used internally to determine the number of OFDM symbols in the data
field. For more information, see IEEE 802.11-17/1001r4.

Data Types: double

GuardInterval — Cyclic prefix length for data field within packet
3.2 (default) | 1.6 | 0.8

Cyclic prefix length, in microseconds, for the data field within a packet, specified as 3.2,
1.6,0r0.8.

Data Types: double

HELTFType — HE-LTF compression mode of HE PPDU
4 (default) | 2| 1

HE-LTF compression mode of HE PPDU, specified as 4, 2 or 1. This value corresponds
four times, two times, or one times HE-LTF duration compression mode, respectively. The
HE-LTF type is enumerated in Table 28-1 of IEEE 802.11ax/D2.0 as:

* Ix HE-LTF — For 3.2 ps with a guard interval duration of 0.8 us or 1.6us
* 2x HE-LTF — For 6.4 us with a guard interval duration of 0.8 ps or 1.6 ps

1-191

1 Functions — Alphabetical List

1-192

* 4x HE-LTF — For 12.8 ps with a guard interval duration of 0.8 ps or 3.2 us
Data Types: double

UplinkIndication — Uplink indication
false (default) | true

Uplink indication, specified as false or true. Specify false to indicate that the PPDU is
sent on a downlink transmission. Specify true to indicate that the PPDU is sent on an
uplink transmission.

Data Types: logical

BSSColor — Basic service set color identifier
0 (default) | integer in the range [0, 63]

Basic service set (BSS) color identifier, specified as an integer in the range [0, 63].

Data Types: double

SpatialReuse — Spatial reuse indication
0 (default) | integer in the range [0, 15]

Spatial reuse indication, specified as an integer in the range [0, 15].

Data Types: double

TXOPDuration — Duration information for TXOP protection
127 (default) | integer in the range [0, 127]

Duration information for TXOP protection, specified as an integer in the range [0, 127].

Data Types: double

HighDoppler — High Doppler mode indication
false (default) | true

High Doppler mode indication, specified as a logical value. Set this property to true to
indicate high Doppler in HE-SIG-A.

Dependencies

The true value for this property is valid only when the NumSpaceTimeStreams property
is less than or equal to 4 for any RU.

Data Types: logical

wlanHESUConfig

MidamblePeriodicity — HE-data field midamble periodicity
10 (default) | 20

HE-data field midamble periodicity in the number of OFDM symbols, specified as 10 or
20.

Dependencies

This property applies only when the HighDoppler property is true.
Data Types: double

Output Arguments

cfgHESU — Single user HE PPDU configuration
wlanHESUConfig object

Single user HE “PPDU” on page 1-193 configuration, returned as a wlanHESUConfig
object. The properties of cfgHESU are described in wlanHESUConfig Properties.

Definitions

PPDU

The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

References

[1]1 IEEE Std P802.11ax™/D2.0 Draft Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 6: Enhancements for High Efficiency WLAN.

1-193

1 Functions — Alphabetical List

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

Functions
getPSDULength | ruInfo | wlanDMGConfig | wlanHEMUConfig | wlanHTConfig |
wlanNonHTConfig | wlanS1GConfig | wlanVHTConfig | wlanWaveformGenerator

Introduced in R2018b

1-194

wlanHTConfig

wlanHTConfig

Create HT format configuration object

Syntax
cfgHT = wlanHTConfig
cfgHT = wlanHTConfig(Name,Value)

Description

cfgHT = wlanHTConfig creates a configuration object that initializes parameters for an
IEEE 802.11 high throughput mixed (HT-mixed) format “PPDU” on page 1-201.

cfgHT = wlanHTConfig(Name,Value) creates an HT format configuration object that
overrides the default settings using one or more Name, Value pair arguments.

At runtime, the calling function validates object settings for properties relevant to the
operation of the function.

Examples

Create HT Configuration Object with Default Settings

Create an HT configuration object. After creating the object update the number of
transmit antennas and space-time streams.

cfgHT

wlanHTConfig

cfgHT =
wlanHTConfig with properties:

ChannelBandwidth: 'CBW20'

NumTransmitAntennas: 1
NumSpaceTimeStreams: 1

1-195

1 Functions — Alphabetical List

SpatialMapping: 'Direct’
MCS: 0O
GuardInterval: 'Long'
ChannelCoding: 'BCC'
PSDULength: 1024
AggregatedMPDU: ©
RecommendSmoothing: 1

Update the number of antennas to two, and number of space-time streams to four.

2;
4

cfgHT.NumTransmitAntennas
cfgHT.NumSpaceTimeStreams

cfgHT =
wlanHTConfig with properties:

ChannelBandwidth: 'CBW20'
NumTransmitAntennas: 2
NumSpaceTimeStreams: 4

SpatialMapping: 'Direct’
MCS: 0
GuardInterval: 'Long'
ChannelCoding: 'BCC'
PSDULength: 1024
AggregatedMPDU: 0
RecommendSmoothing: 1

Create wlanHTConfig Object

Create a wlanHTConfig object with a PSDU length of 2048 bytes, and using BCC
forward error correction.

cfgHT = wlanHTConfig('PSDULength',2048);
cfgHT.ChannelBandwidth = 'CBW20'

cfgHT =
wlanHTConfig with properties:

ChannelBandwidth: 'CBW20'
NumTransmitAntennas: 1

1-196

wlanHTConfig

NumSpaceTimeStreams:
SpatialMapping:

MCS:

GuardInterval:
ChannelCoding:
PSDULength:
AggregatedMPDU:
RecommendSmoothing:

1
'‘Direct’
0

'Long’
'BCC'
2048

0

1

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: 'ChannelBandwidth', 'CBW40', 'NumTransmitAntennas', 2

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.
Data Types: char | string

NumTransmitAntennas — Number of transmit antennas

1 (default) |23 |4

Number of transmit antennas, specified as 1, 2, 3, or 4.

Data Types: double

NumSpaceTimeStreams — Number of space-time streams

1 (default) [2|34

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.

Data Types: double

1-197

1 Functions — Alphabetical List

1-198

NumExtensionStreams — Number of extension spatial streams
0 (default) [1]2]3

Number of extension spatial streams in the transmission, specified as 0, 1, 2, or 3. When
NumExtensionStreams is greater than 0, SpatialMapping must be 'Custom'.

Data Types: double

SpatialMapping — Spatial mapping scheme
'‘Direct’' (default) | '"Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
"Custom'. The default value 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

Data Types: char | string

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to

rotate and scale the constellation mapper output vector. This property applies when the
SpatialMapping property is set to 'Custom'. The spatial mapping matrix is used for
beamforming and mixing space-time streams over the transmit antennas.

* When specified as a scalar, NumTransmitAntennas = NumSpaceTimeStreams =1
and a constant value applies to all the subcarriers.

* When specified as a matrix, the size must be (Ngrs + Ngss)-by-Nr. Ngrg is the number
of space-time streams. Nggg is the number of extension spatial streams. N7 is the
number of transmit antennas. The spatial mapping matrix applies to all the
subcarriers. The first Ngrg and last Nggg rows apply to the space-time streams and
extension spatial streams respectively.

* When specified as a 3-D array, the size must be Ngr-by-(Ngrs + Nggg)-by-Nr. Ngr is the
sum of the data and pilot subcarriers, as determined by ChannelBandwidth. Ngrg is
the number of space-time streams. Nggg is the number of extension spatial streams. Ny
is the number of transmit antennas. In this case, each data and pilot subcarrier can
have its own spatial mapping matrix.

The table shows the ChannelBandwidth setting and the corresponding Ngr.

wlanHTConfig

ChannelBandwidth Ngr
'CBW20' 56
'CBW40' 114

The calling function normalizes the spatial mapping matrix for each subcarrier.

Example: [0.5 0.3; 0.4 0.4; 0.5 0.8] represents a spatial mapping matrix having
three space-time streams and two transmit antennas.

Data Types: double
Complex Number Support: Yes

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 31

Modulation and coding scheme to use for transmitting the current packet, specified as an
integer from 0 to 31. The MCS setting identifies which modulation and coding rate
combination is used, and the number of spatial streams (Ngg).

MCS(Note 1) Ngg(Note 1) Modulation Coding Rate
0, 8,16, or 24 1,2,3,0or4 BPSK 1/2
1,9,17, or 25 1,2,3,0or4 QPSK 1/2
2,10, 18, or 26 1,2,3,0or4 QPSK 3/4
3,11, 19, or 27 1,2,3,0or4 16QAM 1/2
4,12, 20, or 28 1,2,3,or4 16QAM 3/4
5,13, 21, or 29 1,2,3,0or4 64QAM 2/3
6, 14, 22, or 30 1,2,3,0or4 64QAM 3/4
7,15, 23, or 31 1,2,3,or4 64QAM 5/6

Note-l MCS from 0 to 7 have one spatial stream. MCS from 8 to 15 have two spatial
streams. MCS from 16 to 23 have three spatial streams. MCS from 24 to 31 have four
spatial streams.

See IEEE 802.11-2012, Section 20.6 for further description of MCS dependent
parameters.

When working with the HT-Data field, if the number of space-time streams is equal to the
number of spatial streams, no space-time block coding (STBC) is used. See IEEE
802.11-2012, Section 20.3.11.9.2 for further description of STBC mapping.

1-199

1 Functions — Alphabetical List

1-200

Example: 22 indicates an MCS with three spatial streams, 64-QAM modulation, and a 3/4
coding rate.

Data Types: double

GuardInterval — Cyclic prefix length for the data field within a packet
"Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

* The long guard interval length is 800 ns.
* The short guard interval length is 400 ns.

Data Types: char | string

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default) or
"LDPC'. 'BCC" indicates binary convolutional coding, and 'LDPC"' indicates low density
parity check coding.

Data Types: char | cell | string

PSDULength — Number of bytes carried in the user payload
1024 (default) | integer from 0 to 65,535

Number of bytes carried in the user payload, specified as an integer from 0 to 65,535. A
PSDULength of 0 implies a sounding packet for which there are no data bits to recover.

Example: 512
Data Types: double

AggregatedMPDU — MPDU aggregation indicator
false (default) | true

MPDU aggregation indicator, specified as a logical. Setting AggregatedMPDU to true
indicates that the current packet uses A-MPDU aggregation.

Data Types: logical

RecommendSmoothing — Recommend smoothing for channel estimation
true (default) | false

wlanHTConfig

Recommend smoothing for channel estimation, specified as a logical.

+ If the frequency profile is nonvarying across the channel , the receiver sets this
property to true. In this case, frequency-domain smoothing is recommended as part
of channel estimation.

+ If the frequency profile varies across the channel, the receiver sets this property to
false. In this case, frequency-domain smoothing is not recommended as part of
channel estimation.

Data Types: logical

Output Arguments

cfgHT — HT PPDU configuration
wlanHTConfig object

HT “PPDU” on page 1-201 configuration, returned as a wlanHTConfig object. The
properties of cfgHT are described in wlanHTConfig.

Definitions

PPDU

The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

1-201

1 Functions — Alphabetical List

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

Functions

wlanDMGConfig | wlanHTDataRecover | wlanNonHTConfig | wlanS1GConfig |
wlanVHTConfig | wlanWaveformGenerator

Apps
Wireless Waveform Generator

Topics
“Packet Size and Duration Dependencies”

Introduced in R2015b

1-202

wlanHTData

wlanHTData

Generate HT-Data field waveform

Syntax

wlanHTData(psdu, cfg)
wlanHTData(psdu,cfg,scramInit)

y
y

Description

y = wlanHTData(psdu, cfg) generates the “HT-Data field” on page 1-210° time-
domain waveform for the input PLCP service data unit, psdu, and specified configuration
object, cfg. See “HT-Data Field Processing” on page 1-211 for waveform generation
details.

y = wlanHTData(psdu,cfg,scramInit) uses scramInit for the scrambler
initialization state.

Examples

Generate HT-Data Waveform

Generate the waveform signal for a 40 MHz HT-mixed data field with multiple transmit
antennas. Create an HT format configuration object. Specify 40 MHz channel bandwidth,
two transmit antennas, and two space-time streams.

cfgHT = wlanHTConfig('ChannelBandwidth', 'CBW40"', 'NumTransmitAntennas',2, 'NumSpaceTimeS:

cfgHT =
wlanHTConfig with properties:

6. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1-203

1 Functions — Alphabetical List

ChannelBandwidth: 'CBW40'
NumTransmitAntennas: 2
NumSpaceTimeStreams: 2

SpatialMapping: 'Direct’
MCS: 12
GuardInterval: 'Long'
ChannelCoding: 'BCC'
PSDULength: 1024
AggregatedMPDU: 0
RecommendSmoothing: 1

Assign PSDULength bytes of random data to a bit stream and generate the HT data
waveform.

PSDU = randi([0 1],cfgHT.PSDULength*8,1);
y = wlanHTData(PSDU, cfgHT);

Determine the size of the waveform.
size(y)
ans = 1Ix2

2080 2

The function returns a complex two-column time-domain waveform. Each column contains
2080 samples, corresponding to the HT-Data field for each transmit antenna.

Input Arguments

psdu — PLCP Service Data Unit
vector

PLCP Service Data Unit (“PSDU” on page 1-211), specified as an N,-by-1 vector. N, is the
number of bits and equals PSDULength x 8.

Data Types: double

cfg — Format configuration
wlanHTConfig object

1-204

wlanHTData

Format configuration, specified as a wlanHTConfig object. The wlanHTData function
uses the object properties indicated.

ChannelBandwidth — Channel bandwidth
"CBW20' (default) | 'CBW40"

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.
Data Types: char | string

NumTransmitAntennas — Number of transmit antennas
1 (default) |23 |4

Number of transmit antennas, specified as 1, 2, 3, or 4.

Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) |2 3|4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.

Data Types: double

NumExtensionStreams — Number of extension spatial streams
0 (default) [1]2]3

Number of extension spatial streams in the transmission, specified as 0, 1, 2, or 3. When
NumExtensionStreams is greater than 0, SpatialMapping must be 'Custom'.

Data Types: double

SpatialMapping — Spatial mapping scheme
'‘Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom’

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
"Custom'. The default value 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

Data Types: char | string

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
rotate and scale the constellation mapper output vector. This property applies when the

1-205

1 Functions — Alphabetical List

1-206

SpatialMapping property is set to 'Custom'. The spatial mapping matrix is used for
beamforming and mixing space-time streams over the transmit antennas.

* When specified as a scalar, NumTransmitAntennas = NumSpaceTimeStreams =1
and a constant value applies to all the subcarriers.

* When specified as a matrix, the size must be (Ngrs + Ngss)-by-Nr. Ngrg is the number
of space-time streams. Nggg is the number of extension spatial streams. N7 is the
number of transmit antennas. The spatial mapping matrix applies to all the
subcarriers. The first Ngrg and last Nggg rows apply to the space-time streams and
extension spatial streams respectively.

* When specified as a 3-D array, the size must be Ngr-by-(Ngrs + Ngss)-by-Nr. Ngr is the
sum of the data and pilot subcarriers, as determined by ChannelBandwidth. Ngrg is
the number of space-time streams. Nzgg is the number of extension spatial streams. Nt
is the number of transmit antennas. In this case, each data and pilot subcarrier can
have its own spatial mapping matrix.

The table shows the ChannelBandwidth setting and the corresponding Ngr.

ChannelBandwidth Ngr
'CBW20' 56
'CBW40' 114

The calling function normalizes the spatial mapping matrix for each subcarrier.

Example: [0.5 0.3; 0.4 0.4; 0.5 0.8] represents a spatial mapping matrix having
three space-time streams and two transmit antennas.

Data Types: double
Complex Number Support: Yes

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 31

Modulation and coding scheme to use for transmitting the current packet, specified as an
integer from 0 to 31. The MCS setting identifies which modulation and coding rate
combination is used, and the number of spatial streams (Ngg).

MCS(Note 1) N (Note 1) Modulation Coding Rate

0,8, 16, or 24 1,2,3,0r4 BPSK 1/2

wlanHTData

MCS(Note 1) N (Note 1) Modulation Coding Rate
1,9,17, or 25 1,2,3,0or4 QPSK 1/2
2,10, 18, or 26 1,2,3,0or4 QPSK 3/4
3,11, 19, or 27 1,2,3,0or4 16QAM 1/2
4,12, 20, or 28 1,2,3,0or4 16QAM 3/4
5,13, 21, or 29 1,2,3,0or4 64QAM 2/3
6, 14, 22, or 30 1,2,3,0or4 64QAM 3/4
7,15, 23, or 31 1,2,3,0or4 64QAM 5/6

Note-1 MCS from 0 to 7 have one spatial stream. MCS from 8 to 15 have two spatial
streams. MCS from 16 to 23 have three spatial streams. MCS from 24 to 31 have four
spatial streams.

See IEEE 802.11-2012, Section 20.6 for further description of MCS dependent
parameters.

When working with the HT-Data field, if the number of space-time streams is equal to the
number of spatial streams, no space-time block coding (STBC) is used. See IEEE
802.11-2012, Section 20.3.11.9.2 for further description of STBC mapping.

Example: 22 indicates an MCS with three spatial streams, 64-QAM modulation, and a 3/4
coding rate.

Data Types: double

GuardInterval — Cyclic prefix length for the data field within a packet
"Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

* The long guard interval length is 800 ns.
* The short guard interval length is 400 ns.

Data Types: char | string

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default) or
"LDPC'. 'BCC" indicates binary convolutional coding and 'LDPC"' indicates low density

1-207

1 Functions — Alphabetical List

1-208

parity check coding. Providing a character vector or a single cell character vector defines
the channel coding type for a single user or all users in a multiuser transmission. By
providing a cell array different channel coding types can be specified per user for a
multiuser transmission.

Data Types: char | cell | string

PSDULength — Number of bytes carried in the user payload
1024 (default) | integer from 0 to 65,535

Number of bytes carried in the user payload, specified as an integer from 0 to 65,535. A
PSDULength of 0 implies a sounding packet for which there are no data bits to recover.

Example: 512
Data Types: double

scramInit — Scrambler initialization state
93 (default) | integer from 1 to 127 | binary vector

Scrambler initialization state for each packet generated, specified as an integer from 1 to
127 or as the corresponding binary vector of length seven. The default value of 93 is the
example state given in IEEE Std 802.11-2012, Section L.1.5.2.

The scrambler initialization used on the transmission data follows the process described
in IEEE Std 802.11-2012, Section 18.3.5.5 and IEEE Std 802.11ad-2012, Section 21.3.9.
The header and data fields that follow the scrambler initialization field (including data
padding bits) are scrambled by XORing each bit with a length-127 periodic sequence
generated by the polynomial S(x) = x’+x*+1. The octets of the PSDU (Physical Layer
Service Data Unit) are placed into a bit stream, and within each octet, bit 0 (LSB) is first
and bit 7 (MSB) is last. The generation of the sequence and the XOR operation are shown
in this figure:

wlanHTData

Data In

x?q—xﬁq—x5~—|~x44—x3q—x2q—x1 -|-)

Scrambled Data Out

Conversion from integer to bits uses left-MSB orientation. For the initialization of the
scrambler with decimal 1, the bits are mapped to the elements shown.

Element (X7 X6 X5 x4 X3 X2)&

Bit Value |0 0 0 0 0 0 1

To generate the bit stream equivalent to a decimal, use de2bi. For example, for decimal
1

de2bi(1,7,'left-msb")
ans =

0 0 0 0 0 0 1

Example: [1; 0; 1; 1; 1; 0; 1] conveys the scrambler initialization state of 93 as a
binary vector.

Data Types: double | int8

1-209

1 Functions — Alphabetical List

Output Arguments

y — HT-Data field time-domain waveform
matrix

“HT-Data field” on page 1-210 time-domain waveform for HT-mixed format, returned as an
Ng-by-N7 matrix. Ng is the number of time domain samples, and Ny is the number of
transmit antennas.

Definitions

HT-Data field

The high throughput data field (HT-Data) follows the last HT-LTF of an HT-mixed packet.

Legacy Preamble HT Preamble Data

Service Field

HT Data Tail

The high throughput data field is used to transmit one or more frames from the MAC
layer and consists of four subfields.

HT Data Field

Tail Pad Bits
EMas as
hits needed

Service PsSDU
16 bits 1-65535 byles

* Service field — Contains 16 zeros to initialize the data scrambler.

* PSDU — Variable-length field containing the PLCP service data unit (PSDU). In
802.11, the PSDU can consist of an aggregate of several MAC service data units.

1-210

wlanHTData

» Tail — Tail bits required to terminate a convolutional code. The field uses six zeros for
each encoding stream.

* Pad Bits — Variable-length field required to ensure that the HT-Data field consists of
an integer number of symbols.

PSDU
Physical layer convergence procedure (PLCP) service data unit (PSDU). This field is

composed of a variable number of octets. The minimum is 0 (zero) and the maximum is
2500. For more information, see IEEE Std 802.11™-2012, Section 15.3.5.7.

Algorithms

HT-Data Field Processing

The “HT-Data field” on page 1-210 follows the last HT-LTF in the packet structure.

HT-mixed Format PPDU

Data HT-LTFs Extension HT-LTFs
8us 4us 4ps per LTF 4ps per LTF Data (non LDPC case only)

K_H(_H A A A
N ' \

L-STF

L- HT- | HT- HT- | HT- HT. | SERVICE 6-Ne= | Pad
LLTE | gig| HTSIC | grr| e | | trr| e | *** | LT | 16bits | PSPY | Tailbits | bits

The “HT-Data field” on page 1-210 includes the user payload in the PSDU, plus 16 service
bits, 6 x Ngg tail bits, and additional padding bits as required to fill out the last OFDM
symbol.

For algorithm details, refer to IEEE Std 802.11™-2012 [1], Section 20.3.11. The
wlanHTData function performs transmitter processing on the “HT-Data field” on page 1-
210 and outputs the time-domain waveform for N transmit antennas.

1-211

1 Functions — Alphabetical List

Zeros User Payload Zeros_ Ppi\édz;ﬁ;cr
(16,1) | (1...65836)'8 | (E°Nes bits) | P20V
¥ ! ! !
Service PsDU Tail bits Pad bits
'\r_\ __________________ . _.d_'__'__.___,.._——'"__"
| -
i Data i ? __________ ,:
! 7 i i Stream |
i ! ! Parser i
i
i Serambler i I l Mss i
i |
| " ! | BCC |
i ! ! Interleaver i
i | Resettail bits | ! ! ¥ i
! i i |
! 1 | | | Constellation |
B i """" - ! Mapper I
. SR S P .
i BCC Encoder ! _J Nzs
E Parser ' e A ‘:
| : ! H
| g Nes 3| 1| sTEC Pt | |
: i | Insertion | |
|| BCCEncoder | | b Ners :
i
: | i Symbol |, i
B H T | Packing - !
N i
ES i ¥ i
''| Cyclic Shift |
I Diversity i
e s i
p Mas
Spatial OFDM modulation and
Mapping N " eyclic prefix addition
i

1-212

To Windowing and RF
—

Ngg is the number of BCC encoders.
Ngg is the number of spatial streams.
Ng1s is the number of space-time streams.

Nr is the number of transmit antennas.

wlanHTData

BCC channel coding is shown. STBC and spatial mapping are optional modes for HT
format.

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and

metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

wlanHTConfig | wlanHTDataRecover | wlanHTLTF | wlanWaveformGenerator

Introduced in R2015b

1-213

1 Functions — Alphabetical List

1-214

wlanHTDataRecover

Recover HT data

Syntax

recData wlanHTDataRecover(rxSig, chEst,noiseVarEst, cfg)
recData wlanHTDataRecover(rxSig, chEst,noiseVarEst, cfg, cfgRec)
[recData,eqSym] = wlanHTDataRecover()

[recData,eqSym,cpe] = wlanHTDataRecover()

Description

recData = wlanHTDataRecover(rxSig, chEst,noiseVarEst, cfg) returns the
recovered “HT-Data field” on page 1-2217, recData, for input signal rxSig. Specify a
channel estimate for the occupied subcarriers, chEst, a noise variance estimate,
noiseVarEst, and an “HT-Mixed” on page 1-222 format configuration object, cfg.

recData = wlanHTDataRecover(rxSig, chEst,noiseVarEst,cfg,cfgRec)
specifies algorithm information using wlanRecoveryConfig object cfgRec.

[recData,eqSym] = wlanHTDataRecover() also returns the equalized symbols,
eqSym, using the arguments from the previous syntaxes.

[recData,eqSym,cpe] = wlanHTDataRecover() also returns the common
phase error, cpe.

Examples

7. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

wlanHTDataRecover

Recover HT-Data Bits

Create an HT configuration object having a PSDU length of 1024 bytes. Generate an
HTData sequence from a binary sequence whose length is eight times the length of the
PSDU.

cfgHT = wlanHTConfig('PSDULength',1024);
txBits = randi([0 1],8*cfgHT.PSDULength,1);
txHTSig = wlanHTData(txBits,cfgHT);

Pass the signal through an AWGN channel with a signal-to-noise ratio of 10 dB.
rxHTSig = awgn(txHTSig,10);

Specify a channel estimate. Because fading was not introduced, a vector of ones is a
perfect estimate. For a 20 MHz bandwidth, there are 52 data subcarriers and 4 pilot
subcarriers in the HT-SIG field.

chEst = ones(56,1);

Recover the data bits and determine the number of bit errors. Display the number of bit
errors and the associated bit error rate.

rxBits = wlanHTDataRecover(rxHTSig,chEst,0.1,cfgHT);
[numerr,ber] = biterr(rxBits,txBits)

numerr = 0

ber = 0

Recover HT-Data Field Signal Using Zero-Forcing Algorithm

Create an HT configuration object having a 40 MHz channel bandwidth and a 1024-byte
PSDU length. Generate the corresponding HT-Data sequence.

cfgHT = wlanHTConfig('ChannelBandwidth', 'CBW40"', 'PSDULength',1024);
txBits = randi([0 1],8*cfgHT.PSDULength,1);
txHTSig = wlanHTData(txBits, cfgHT);

Pass the signal through an AWGN channel with a signal-to-noise ratio of 7 dB.

rxHTSig = awgn(txHTSig,7);

1-215

1 Functions — Alphabetical List

Create a data recovery object that specifies the use of the zero-forcing algorithm.

cfgRec = wlanRecoveryConfig('EqualizationMethod', 'ZF"');

Recover the data and determine the number of bit errors. Because fading was not
introduced, the channel estimate is set to a vector of ones whose length is equal to the
number of occupied subcarriers.

rxBits = wlanHTDataRecover(rxHTSig,ones(114,1),0.2,cfgHT,cfgRec);

[numerr,ber] = biterr(rxBits,txBits)
numerr = 0
ber = 0

Input Arguments

rxSig — Received HT-Data signal
vector | matrix

Received HT-Data signal, specified as an Ng-by-Ny vector or matrix. Ng is the number of
samples, and Ny is the number of receive antennas.

Data Types: double

chEst — Channel estimate
vector | matrix | 3-D array

Channel estimate, specified as an Ng-by-Ngrs-by-Ny array. Ngr is the number of occupied
subcarriers, Ngrc is the number of space-time streams, and Ny is the number of receive
antennas.

Data Types: double

noiseVarEst — Noise variance estimate
scalar

Noise variance estimate, specified as a nonnegative scalar.
Example: 0.7071
Data Types: double

1-216

wlanHTDataRecover

cfg — Format configuration
wlanHTConfig object

Format configuration, specified as a wlanHTConfig object. The wlanHTDataRecover
function uses the following wlanHTConfig object properties:

ChannelBandwidth — Channel bandwidth
"CBW20' (default) | 'CBW40"

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40"'.
Data Types: char | string

NumSpaceTimeStreams — Number of space-time streams
1 (default) |23 |4
Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.

Data Types: double

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 31

Modulation and coding scheme to use for transmitting the current packet, specified as an
integer from 0 to 31. The MCS setting identifies which modulation and coding rate
combination is used, and the number of spatial streams (Ngg).

MCS(Note 1) Ngg(Note 1) Modulation Coding Rate
0, 8, 16, or 24 1,2,3,0r4d BPSK 1/2
1,9,17, or 25 1,2,3,0r4d QPSK 1/2
2,10, 18, or 26 1,2,3,0or4 QPSK 3/4
3,11, 19, or 27 1,2,3,0or4 16QAM 1/2
4,12, 20, or 28 1,2,3,0r4d 16QAM 3/4
5,13, 21, or 29 1,2,3,0r4d 64QAM 2/3
6, 14, 22, or 30 1,2,3,0or4 64QAM 3/4
7,15, 23, or 31 1,2,3,0or4 64QAM 5/6

1-217

1 Functions — Alphabetical List

1-218

MCS(Note 1) N (Note 1) Modulation Coding Rate

Note-1 MCS from 0 to 7 have one spatial stream. MCS from 8 to 15 have two spatial
streams. MCS from 16 to 23 have three spatial streams. MCS from 24 to 31 have four

spatial streams.

See IEEE 802.11-2012, Section 20.6 for further description of MCS dependent
parameters.

When working with the HT-Data field, if the number of space-time streams is equal to the
number of spatial streams, no space-time block coding (STBC) is used. See IEEE
802.11-2012, Section 20.3.11.9.2 for further description of STBC mapping.

Example: 22 indicates an MCS with three spatial streams, 64-QAM modulation, and a 3/4
coding rate.

Data Types: double

GuardInterval — Cyclic prefix length for the data field within a packet
‘Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

* The long guard interval length is 800 ns.
* The short guard interval length is 400 ns.

Data Types: char | string

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default) or
"LDPC'. 'BCC" indicates binary convolutional coding and 'LDPC"' indicates low density
parity check coding. Providing a character vector or a single cell character vector defines
the channel coding type for a single user or all users in a multiuser transmission. By
providing a cell array different channel coding types can be specified per user for a
multiuser transmission.

Data Types: char | cell | string

PSDULength — Number of bytes carried in the user payload
1024 (default) | integer from 0 to 65,535

wlanHTDataRecover

Number of bytes carried in the user payload, specified as an integer from 0 to 65,535. A
PSDULength of 0 implies a sounding packet for which there are no data bits to recover.

Example: 512
Data Types: double

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters, specified as a wlanRecoveryConfig object. The object
properties include:

OFDMSymbol0ffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbol0ffset =0
represents the start of the cyclic prefix and OFDMSymbol0ffset = 1 represents the end
of the cyclic prefix.

- Cyclic Prefix (CP)

) Data
CP
b
OFDMSymbolOffset =X * Rx FFT
Minimum OFDMSymbolOffset =0 Rx FFT
Maximum OFDMSymbolOffset =1 | 1 Rx FFT

Data Types: double

EqualizationMethod — Equalization method
"MMSE"' (default) | ' ZF'

Equalization method, specified as 'MMSE"' or 'ZF'.

1-219

1 Functions — Alphabetical List

1-220

* 'MMSE' indicates that the receiver uses a minimum mean square error equalizer.
* 'ZF' indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'
Data Types: char | string

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

* 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

* 'None' — Pilot phase tracking does not occur.
Data Types: char | string

MaximumLDPCIterationCount — Maximum number of decoding iterations in
LDPC
12 (default) | positive scalar integer

Maximum number of decoding iterations in LDPC, specified as a positive scalar integer.
This parameter is applicable when channel coding is set to LDPC for the user of interest.

For information on channel coding options, see the 802.11 format configuration object of
interest.
Data Types: double

EarlyTermination — Enable early termination of LDPC decoding
false (default) | true

Enable early termination of LDPC decoding, specified as a logical. This parameter is
applicable when channel coding is set to LDPC for the user of interest.

* When set to false, LDPC decoding completes the number of iterations specified by
MaximumLDPCIterationCount, regardless of parity check status.
* When set to true, LDPC decoding terminates when all parity-checks are satisfied.

For information on channel coding options, see the 802.11 format configuration object of
interest.

wlanHTDataRecover

Output Arguments

recData — Recovered binary output data
binary column vector

Recovered binary output data, returned as a column vector of length 8 XNpgpy, where
Npspy is the length of the PSDU in bytes. See wlanHTConfig for PSDULength details.

Data Types: int8

eqSym — Equalized symbols
column vector | matrix | 3-D array

Equalized symbols, returned as an Ngp-by-Ngy\-by-Ngg array. Ngp is the number of data
subcarriers, Ngyy is the number of OFDM symbols in the HT-Data field, and Ngg is the
number of spatial streams.

Data Types: double

cpe — Common phase error
column vector

Common phase error in radians, returned as a column vector having length Ngyym. Ngyy is
the number of OFDM symbols in the HT-Data field.

Definitions

HT-Data field

The high throughput data field (HT-Data) follows the last HT-LTF of an HT-mixed packet.

Legacy Preamble HT Preamble Data

Service Field

HT Data Tail

1-221

1 Functions — Alphabetical List

1-222

The high throughput data field is used to transmit one or more frames from the MAC
layer and consists of four subfields.

HT Data Field

Service PSDU E__'N""" Pa‘:lsﬂ“s
H 1]
16 bits 1-65535 bytes i eadad

* Service field — Contains 16 zeros to initialize the data scrambler.

* PSDU — Variable-length field containing the PLCP service data unit (PSDU). In
802.11, the PSDU can consist of an aggregate of several MAC service data units.

» Tail — Tail bits required to terminate a convolutional code. The field uses six zeros for

each encoding stream.

* Pad Bits — Variable-length field required to ensure that the HT-Data field consists of

an integer number of symbols.

HT-Mixed

High throughput mixed (HT-mixed) format devices support a mixed mode in which the
PLCP header is compatible with HT and Non-HT modes.

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

wlanHTDataRecover

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

wlanHTConfig | wlanRecoveryConfig

Introduced in R2015b

1-223

1 Functions — Alphabetical List

wlanHTLTF

Generate HT-LTF waveform

Syntax

y = wlanHTLTF(cfg)

Description

y = wlanHTLTF(cfg) generates an “HT-LTF” on page 1-2282 time-domain waveform for
“HT-mixed” on page 1-230 format transmissions given the parameters specified in cfg.

Examples

Generate Single-Stream HT-LTF Waveform

Create a wlanHTConfig object having a channel bandwidth of 40 MHz.
cfg = wlanHTConfig('ChannelBandwidth', 'CBW40"');

Generate the corresponding HT-LTF.

h1tfOut = wlanHTLTF(cfg);
size(hltfOut)

ans = 1x2

160 1

The cfg parameters result in a 160-sample waveform having only one column
corresponding to a single stream transmission.

8. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1-224

wlanHTLTF

Generate HT-LTF with Four Space-Time Streams
Generate an HT-LTF having four transmit antennas and four space-time streams.

Create a wlanHTConfig object having an MCS of 31, four transmit antennas, and four
space-time streams.

cfg = wlanHTConfig('MCS"',31, 'NumTransmitAntennas',4, 'NumSpaceTimeStreams',4)

cfg =
wlanHTConfig with properties:

ChannelBandwidth: 'CBW20'
NumTransmitAntennas: 4
NumSpaceTimeStreams: 4

SpatialMapping: 'Direct’
MCS: 31
GuardInterval: 'Long'
ChannelCoding: 'BCC'
PSDULength: 1024
AggregatedMPDU: 0
RecommendSmoothing: 1

Generate the corresponding HT-LTE.

hltfOut = wlanHTLTF(cfg);

Verify that the HT-LTF output consists of four streams (one for each antenna).
size(hltfOut)

ans = 1Ix2

320 4

Because the channel bandwidth is 20 MHz and has four space-time streams, the output
waveform has four HT-LTF and 320 time-domain samples.

1-225

1 Functions — Alphabetical List

1-226

Input Arguments

cfg — Format configuration
wlanHTConfig object

Format configuration, specified as a wlanHTConfig object. The wlanHTLTF function uses
these properties:

ChannelBandwidth — Channel bandwidth
"CBW20' (default) | 'CBW40"

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.
Data Types: char | string

NumTransmitAntennas — Number of transmit antennas
1 (default) |2 3] 4
Number of transmit antennas, specified as 1, 2, 3, or 4.

Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) |23 |4
Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.

Data Types: double

NumExtensionStreams — Number of extension spatial streams
0 (default) |1 23

Number of extension spatial streams in the transmission, specified as 0, 1, 2, or 3. When
NumExtensionStreams is greater than 0, SpatialMapping must be 'Custom'.
Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
"Custom'. The default value 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

wlanHTLTF

Data Types: char | string

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to

rotate and scale the constellation mapper output vector. This property applies when the
SpatialMapping property is set to 'Custom'. The spatial mapping matrix is used for
beamforming and mixing space-time streams over the transmit antennas.

* When specified as a scalar, NumTransmitAntennas = NumSpaceTimeStreams =1
and a constant value applies to all the subcarriers.

* When specified as a matrix, the size must be (Ngrs + Ngss)-by-Nr. Ngrg is the number
of space-time streams. Nggg is the number of extension spatial streams. N7 is the
number of transmit antennas. The spatial mapping matrix applies to all the
subcarriers. The first Ngrg and last Nggg rows apply to the space-time streams and
extension spatial streams respectively.

* When specified as a 3-D array, the size must be Ngr-by-(Ngrs + Nggg)-by-Nr. Ngr is the
sum of the data and pilot subcarriers, as determined by ChannelBandwidth. Ngrg is
the number of space-time streams. Nggg is the number of extension spatial streams. Ny
is the number of transmit antennas. In this case, each data and pilot subcarrier can
have its own spatial mapping matrix.

The table shows the ChannelBandwidth setting and the corresponding Ngr.

ChannelBandwidth Nsr
'CBW20' 56
'CBW40' 114

The calling function normalizes the spatial mapping matrix for each subcarrier.

Example: [0.5 0.3; 0.4 0.4; 0.5 0.8] represents a spatial mapping matrix having
three space-time streams and two transmit antennas.

Data Types: double
Complex Number Support: Yes

1-227

1 Functions — Alphabetical List

Output Arguments

y — HT-LTF waveform
matrix

HT-LTF waveform, returned as an (Ng X Nyr7r)-by-N matrix. Ng is the number of time
domain samples per Ny rr, Where Ny is the number of OFDM symbols in the “HT-LTF”
on page 1-228. Nt is the number of transmit antennas.

N is proportional to the channel bandwidth. Each symbol contains 80 time samples per
20 MHz channel.

ChannelBandwidth Ng
'CBW20' 80
'CBW40' 160

Determination of the number of Ny 7r is described in “HT-LTF” on page 1-228.
Data Types: double
Definitions

HT-LTF

The high throughput long training field (HT-LTF) is located between the HT-STF and data
field of an HT-mixed packet.

Legacy PTeambIe HT Pr?amble Data
Service Field
HT- HT-
LTF1 I LTFN
4us 4 us

As described in IEEE Std 802.11-2012, Section 20.3.9.4.6, the receiver can use the HT-
LTF to estimate the MIMO channel between the set of QAM mapper outputs (or, if STBC

1-228

wlanHTLTF

is applied, the STBC encoder outputs) and the receive chains. The HT-LTF portion has one
or two parts. The first part consists of one, two, or four HT-LTFs that are necessary for
demodulation of the HT-Data portion of the PPDU. These HT-LTFs are referred to as HT-
DLTFs. The optional second part consists of zero, one, two, or four HT-LTFs that can be
used to sound extra spatial dimensions of the MIMO channel not utilized by the HT-Data
portion of the PPDU. These HT-LTFs are referred to as HT-ELTFs. Each HT long training
symbol is 4 ps. The number of space-time streams and the number of extension streams
determines the number of HT-LTF symbols transmitted.

Tables 20-12, 20-13 and 20-14 from IEEE Std 802.11-2012 are reproduced here.

Nsrs Determination Nyrp.7r Determination Nyre7r Determination
Table 20-12 defines the Table 20-13 defines the Table 20-14 defines the
number of space-time number of HT-DLTFs number of HT-ELTFs
streams (Ngrs) based on the |required for the Ngrs. required for the number of
number of spatial streams extension spatial streams
(Ngg) from the MCS and the (NEss). Nggs is defined in HT-
STBC field. SIG,.
Nss STBC (Nsrs Nsrs Nyrpure NEss Nyrerre
from field

1 1 0 0
MCS

2 2 1 1
- ° - 3 4 2 2
L L 2 4 4 3 4
2 0 2
2 1 3
2 2 4
3 0 3
3 1 4
4 0 4

Additional constraints include:

Nyurrre = Nurorre + Nurerre < 5.

* When Ngrg = 3, Npgs cannot exceed one.

1-229

1 Functions — Alphabetical List

1-230

o If NESS = 1 when NSTS = 3 then NHTLTF = 5.

HT-mixed

As described in IEEE Std 802.11-2012, Section 20.1.4, high throughput mixed (HT-mixed)
format packets contain a preamble compatible with IEEE Std 802.11-2012, Section 18
and Section 19 receivers. Non-HT (Section 18 and Section19) STAs can decode the non-
HT fields (L-STF, L-LTF, and L-SIG). The remaining preamble fields (HT-SIG, HT-STE, and
HT-LTF) are for HT transmission, so the Section 18 and Section 19 STAs cannot decode
them. The HT portion of the packet is described in IEEE Std 802.11-2012, Section
20.3.9.4. Support for the HT-mixed format is mandatory.

PPDU

The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and

metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

wlanHTLTF

See Also
wlanHTConfig | wlanHTData | wlanHTLTFChannelEstimate |

wlanHTLTFDemodulate | wlanLLTF

Introduced in R2015b

1-231

1 Functions — Alphabetical List

1-232

wlanHTLTFDemodulate

Demodulate HT-LTF waveform

Syntax

wlanHTLTFDemodulate(x, cfg)
wlanHTLTFDemodulate(x,cfg,0FDMSymbol0ffset)

y
y

Description

y = wlanHTLTFDemodulate(x, cfg) returns the demodulated “HT-LTF” on page 1-
2369, y, given received HT-LTF x. The input signal is a component of the “HT-mixed” on
page 1-237 format “PPDU” on page 1-238. The function demodulates the signal using the
information in the wlanHTConfig object, cfg.

y = wlanHTLTFDemodulate(x,cfg,OFDMSymbol0ffset) specifies the OFDM symbol
sampling offset.

Examples

Demodulate HT-LTF in AWGN

Create an HT configuration object.

cfg = wlanHTConfig;

Generate an HT-LTF signal based on the object.
x = wlanHTLTF(cfg);

Pass the HT-LTF signal through an AWGN channel.

9. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

wlanHTLTFDemodulate

y = awgn(x,20);
Demodulate the received signal.
z = wlanHTLTFDemodulate(y,cfqg);

Display the scatter plot of the demodulated signal.

scatterplot(z)
Scatter plot
1t i
05T 1
&
E "u ®
o] . e a e 2w
= r .:l“ . 1. -
B 0 - Wve
= - M
-]
05T 1
At 4
-1 0.5 0 0.5 1
In-Phase

1-233

1 Functions — Alphabetical List

1-234

Demodulate 2x2 HT-LTF with OFDM Symbol Offset

Create an HT configuration object having two transmit antennas and two space-time
streams.

cfg = wlanHTConfig('NumTransmitAntennas',2, 'NumSpaceTimeStreams"',2,
'MCS*',8);

Generate the HT-LTF based on the configuration object.
x = wlanHTLTF(cfg);

Pass the HT-LTF signal through an AWGN channel.

y = awgn(x,10);

Demodulate the received signal. Set the OFDM symbol offset to 0.5, which corresponds
to 1/2 of the cyclic prefix length.

z = wlanHTLTFDemodulate(y,cfg,0.5);

Input Arguments

X — Input signal
matrix

Input signal comprising an “HT-LTF” on page 1-236, specified as an Ng-by-Ny matrix. N is
the number of samples and Ny is the number of receive antennas. You can generate the
signal by using the wlanHTLTF function.

Data Types: double

cfg — HT format configuration
wlanHTConfig object

HT format configuration, specified as a wlanHTConf1ig object. The function uses the
following wlanHTConfig object properties:

ChannelBandwidth — Channel bandwidth
'CBW20"' (default) | ' CBW40'

Channel bandwidth in MHz, specified as 'CBW20"' or 'CBW40".

wlanHTLTFDemodulate

Data Types: char | string

NumSpaceTimeStreams — Number of space-time streams

1 (default) |23 |4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.
Data Types: double

NumExtensionStreams — Number of extension spatial streams
0 (default) |1 2|3

Number of extension spatial streams in the transmission, specified as 0, 1, 2, or 3. When
NumExtensionStreams is greater than 0, SpatialMapping must be 'Custom'.

Data Types: double

OFDMSymbol0ffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbol0ffset =0
represents the start of the cyclic prefix and OFDMSymbo10ffset = 1 represents the end
of the cyclic prefix.

- Cyelic Prefix (CP)

) Data
CP
X
OFDMSymbolOffset =X * Rx FFT
Minimum OFDMSymbolOffset =0 Rx FFT
Maximum OFDMSymbolOffset =1 | 1 | Rx FFT

Data Types: double

1-235

1 Functions — Alphabetical List

1-236

Output Arguments

y — Demodulated HT-LTF signal
matrix | 3-D array

Demodulated HT-LTF signal for an HT-Mixed PPDU, returned as an Ngr-by-Ngya-by-Ng
matrix or array. Ngr is the number of data and pilot subcarriers. Ngyy, is the number of
OFDM symbols in the HT-LTF. Ny, is the number of receive antennas.

Data Types: double

Definitions

HT-LTF

The high throughput long training field (HT-LTF) is located between the HT-STF and data
field of an HT-mixed packet.

Legacy Preamble HT Preamble Data
Service Field
HT- HT-
LTF1 - LTFN
4 s 4us

As described in IEEE Std 802.11-2012, Section 20.3.9.4.6, the receiver can use the HT-
LTF to estimate the MIMO channel between the set of QAM mapper outputs (or, if STBC
is applied, the STBC encoder outputs) and the receive chains. The HT-LTF portion has one
or two parts. The first part consists of one, two, or four HT-LTFs that are necessary for
demodulation of the HT-Data portion of the PPDU. These HT-LTFs are referred to as HT-
DLTFs. The optional second part consists of zero, one, two, or four HT-LTFs that can be
used to sound extra spatial dimensions of the MIMO channel not utilized by the HT-Data
portion of the PPDU. These HT-LTFs are referred to as HT-ELTFs. Each HT long training
symbol is 4 ps. The number of space-time streams and the number of extension streams
determines the number of HT-LTF symbols transmitted.

Tables 20-12, 20-13 and 20-14 from IEEE Std 802.11-2012 are reproduced here.

wlanHTLTFDemodulate

Ngrs Determination Nyrp 7 Determination Nyre e Determination
Table 20-12 defines the Table 20-13 defines the Table 20-14 defines the
number of space-time number of HT-DLTFs number of HT-ELTFs
streams (Ngrs) based on the |required for the Ngrs. required for the number of
number of spatial streams extension spatial streams
(Ngs) from the MCS and the (NEgss). Ngss is defined in HT-
STBC field. SIG,.
’fvSS :Tﬁic NSTS NSTS NHTDLTF NESS NHTELTF
rom e

1 1 0 0
MCS

2 2 1 1
! o ! 3 4 2 2
1 1 2

4 4 3 4
2 0 2
2 1 3
2 2 4
3 0 3
3 1 4
4 0 4

Additional constraints include:

* Ngrs + Nggs = 4.

NHTLTF = NHTDLTF + NHTELTF <5.

* When Ngrg = 3, Nggs cannot exceed one.
b If NESS =]. When NSTS = 3 then NHTLTF = 5

HT-mixed

High throughput mixed (HT-mixed) format devices support a mixed mode in which the

PLCP header is compatible with HT and non-HT modes.

1-237

1 Functions — Alphabetical List

1-238

PPDU

The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHTConfig | wlanHTLTF | wlanHTLTFChannelEstimate

Introduced in R2015b

wlanHTSIG

wlanHTSIG

Generate HT-SIG waveform

Syntax

y = wlanHTSIG(cfg)
[y,bits] = wlanHTSIG(cfg)

Description

y = wlanHTSIG(cfg) generates an “HT-SIG” on page 1-244'0 time-domain waveform
for “HT-mixed” on page 1-245 format transmissions given the parameters specified in
cfg.

[y,bits] = wlanHTSIG(cfg) returns the information bits, bits, that comprise the
HT-SIG field.

Examples

Generate HT-SIG Waveform
Generate an HT-SIG waveform for a single transmit antenna.

Create an HT configuration object. Specify a 40 MHz channel bandwidth.

cfg = wlanHTConfig;
cfg.ChannelBandwidth = 'CBW40'

cfg =
wlanHTConfig with properties:

ChannelBandwidth: 'CBW40'

10. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1-239

1 Functions — Alphabetical List

1-240

NumTransmitAntennas: 1
NumSpaceTimeStreams: 1
SpatialMapping: 'Direct’
MCS: 0O
GuardInterval: 'Long'
ChannelCoding: 'BCC'
PSDULength: 1024
AggregatedMPDU: 0
RecommendSmoothing: 1

Generate the HT-SIG waveform. Determine the size of the waveform.

y = wlanHTSIG(cfg);
size(y)

ans = 1x2

320 1

The function returns a waveform having a complex output of 320 samples corresponding
to two 160-sample OFDM symbols.

Display MCS Information from HT-SIG

Generate an HT-SIG waveform and display the MCS information. Change the MCS and
display the updated information.

Create a wlanHTConfig object having two spatial streams and two transmit antennas.
Specify an MCS value of 8, corresponding to BPSK modulation and a coding rate of 1/2.

cfg = wlanHTConfig('NumSpaceTimeStreams',2, 'NumTransmitAntennas',2,'MCS',8);
Generate the information bits from the HT-SIG waveform.
[~,sigBits] = wlanHTSIG(cfg);

Extract the MCS field from sigBits and convert it to its decimal equivalent. The MCS
information is contained in bits 1-7.

mcsBits = sigBits(1:7);
bi2de(mcsBits')

wlanHTSIG

ans = int8
8

The MCS matches the specified value.

Change the MCS to 13, which corresponds to 64-QAM modulation with a 2/3 coding rate.
Generate the HT-SIG waveform.

cfg.MCS = 13;
[~,sigBits] = wlanHTSIG(cfqg);

Verify that the MCS bits are the binary equivalent of 13.

mcsBits = sigBits(1:7);
bi2de(mcsBits')

ans = int8
13

Input Arguments

cfg — Format configuration
wlanHTConfig object

Format configuration, specified as a wlanHTConfig object. The wlanHTSIG function uses
these properties.

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 31

Modulation and coding scheme to use for transmitting the current packet, specified as an
integer from 0 to 31. The MCS setting identifies which modulation and coding rate
combination is used, and the number of spatial streams (Ngg).

MCS(Note 1) Ngg(Note 1) Modulation Coding Rate
0, 8,16, or 24 1,2,3,0or4 BPSK 1/2
1,9,17, or 25 1,2,3,0or4 QPSK 1/2
2,10, 18, or 26 1,2,3,0or4 QPSK 3/4
3,11, 19, or 27 1,2,3,0or4 16QAM 1/2

1-241

1 Functions — Alphabetical List

MCS(Note 1) N (Note 1) Modulation Coding Rate
4,12, 20, or 28 1,2,3,0r4 16QAM 3/4

5,13, 21, or 29 1,2,3,0r4 64QAM 2/3

6, 14, 22, or 30 1,2,3,0r4 64QAM 3/4

7,15, 23, or 31 1,2,3,0r4 64QAM 5/6

Note-1 MCS from 0 to 7 have one spatial stream. MCS from 8 to 15 have two spatial
streams. MCS from 16 to 23 have three spatial streams. MCS from 24 to 31 have four
spatial streams.

See IEEE 802.11-2012, Section 20.6 for further description of MCS dependent
parameters.

When working with the HT-Data field, if the number of space-time streams is equal to the
number of spatial streams, no space-time block coding (STBC) is used. See IEEE
802.11-2012, Section 20.3.11.9.2 for further description of STBC mapping.

Example: 22 indicates an MCS with three spatial streams, 64-QAM modulation, and a 3/4
coding rate.

Data Types: double

ChannelBandwidth — Channel bandwidth
'CBW20"' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40".
Data Types: char | string

PSDULength — Number of bytes carried in the user payload
1024 (default) | integer from 0 to 65,535

Number of bytes carried in the user payload, specified as an integer from 0 to 65,535. A
PSDULength of 0 implies a sounding packet for which there are no data bits to recover.

Example: 512
Data Types: double

RecommendSmoothing — Recommend smoothing for channel estimation
true (default) | false

Recommend smoothing for channel estimation, specified as a logical.

1-242

wlanHTSIG

+ If the frequency profile is nonvarying across the channel , the receiver sets this
property to true. In this case, frequency-domain smoothing is recommended as part
of channel estimation.

» If the frequency profile varies across the channel, the receiver sets this property to
false. In this case, frequency-domain smoothing is not recommended as part of
channel estimation.

Data Types: logical

NumSpaceTimeStreams — Number of space-time streams
1 (default) | 2|3 |4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.

Data Types: double

ChannelCoding — Type of forward error correction coding
'BCC' (default) | ' LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default) or
"LDPC'. 'BCC" indicates binary convolutional coding and 'LDPC"' indicates low density
parity check coding. Providing a character vector or a single cell character vector defines
the channel coding type for a single user or all users in a multiuser transmission. By
providing a cell array different channel coding types can be specified per user for a
multiuser transmission.

Data Types: char | cell | string

GuardInterval — Cyclic prefix length for the data field within a packet
"Long"' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

* The long guard interval length is 800 ns.
* The short guard interval length is 400 ns.

Data Types: char | string

NumExtensionStreams — Number of extension spatial streams
0 (default) [1|23

Number of extension spatial streams in the transmission, specified as 0, 1, 2, or 3. When
NumExtensionStreams is greater than 0, SpatialMapping must be 'Custom'.

1-243

1 Functions — Alphabetical List

Data Types: double

Output Arguments

y — HT-SIG waveform
matrix

HT-SIG waveform, returned as an Ng-by-N; matrix. Ng is the number of time-domain
samples, and Ny is the number of transmit antennas.

Data Types: double

bits — HT-SIG information bits
vector

HT-SIG information bits, returned as a 48-by-1 vector.

Data Types: int8

Definitions

HT-SIG

The high throughput signal (HT-SIG) field is located between the L-SIG field and HT-STF
and is part of the HT-mixed format preamble. It is composed of two symbols, HT-SIG; and

HT-SIG,.
Legacy Preamble HT Preamble Data
Service Field
HT- HT-
SIG1 | sIG2
4us 4dus

HT-SIG carries information used to decode the HT packet, including the MCS, packet
length, FEC coding type, guard interval, number of extension spatial streams, and

1-244

wlanHTSIG

whether there is payload aggregation. The HT-SIG symbols are also used for auto-
detection between HT-mixed format and legacy OFDM packets.

Maodulation and HT Length

Coding Scheme

LSE MSE
B9 10 1 12 13 14 15 16 17 18 19 20 21 22 23

LSE MSE
0 1 2 3 4 5 8

- CBW 20/40

HT-51G,

CRC Tail Bits

Mumber of Extension
w Snatial Streams

Cc7 co
10 11 12 13 14 15 16 17 18 19 20 21 22 23

- SHORT Gl

- Mot Sounding
o L3B

w Aggregation

=~ LSE

w STBC
@ FEC CODING

o Smoothing
r Reserved

HT-SIG,

Refer to IEEE Std 802.11-2012, Section 20.3.9.4.3 for a detailed description of the HT-SIG
field.

HT-mixed

As described in IEEE Std 802.11-2012, Section 20.1.4, high throughput mixed (HT-mixed)
format packets contain a preamble compatible with IEEE Std 802.11-2012, Section 18
and Section 19 receivers. Non-HT (Section 18 and Section19) STAs can decode the non-
HT fields (L-STF, L-LTF, and L-SIG). The remaining preamble fields (HT-SIG, HT-STE, and
HT-LTF) are for HT transmission, so the Section 18 and Section 19 STAs cannot decode
them. The HT portion of the packet is described in IEEE Std 802.11-2012, Section
20.3.9.4. Support for the HT-mixed format is mandatory.

1-245

1 Functions — Alphabetical List

1-246

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHTConfig | wlanHTSIGRecover | wlanHTSTF | wlanLSIG

Introduced in R2015b

wlanHTSIGRecover

wlanHTSIGRecover

Recover HT-SIG information bits

Syntax
recBits = wlanHTSIGRecover(rxSig,chEst,noiseVarEst, cbw)
recBits = wlanHTSIGRecover(rxSig,chEst,noiseVarEst, cbw,cfgRec)

[recBits,failCRC] = wlanHTSIGRecover()

[recBits, failCRC,eqSym] = wlanHTSIGRecover()

[recBits, failCRC,eqSym,cpe] = wlanHTSIGRecover()

Description

recBits = wlanHTSIGRecover(rxSig,chEst,noiseVarEst, cbw) returns the
recovered information bits from the “HT-SIG” on page 1-255!! field and performs a CRC
check. Inputs include the channel estimate data chEst, noise variance estimate
noiseVarEst, and channel bandwidth cbw.

recBits = wlanHTSIGRecover(rxSig,chEst,noiseVarEst, cbw,cfgRec)
specifies algorithm parameters using wlanRecoveryConfig object cfgRec.

[recBits,failCRC] = wlanHTSIGRecover() returns the result of the CRC

check, failCRC, using any of the arguments from the previous syntaxes.

[recBits, failCRC,eqSym] = wlanHTSIGRecover() returns the equalized
symbols, eqSym.

[recBits, failCRC,eqSym,cpe] = wlanHTSIGRecover() returns the common
phase error, cpe.

Examples

11. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1-247

1 Functions — Alphabetical List

1-248

Recover HT-SIG Information Bits in Perfect Channel

Create a wlanHTConfig object having a channel bandwidth of 40 MHz. Use the object to
create an HT-SIG field.

cfg = wlanHTConfig('ChannelBandwidth', 'CBW40");
[txSig,txBits] = wlanHTSIG(cfg);

Because a perfect channel is assumed, specify the channel estimate as a column vector of
ones and the noise variance estimate as zero.

chEst = ones(104,1);
noiseVarEst = 0;

Recover the HT-SIG information bits. Verify that the received information bits are
identical to the transmitted bits.

rxBits = wlanHTSIGRecover(txSig,chEst,noiseVarEst, 'CBW40');
numerr = biterr(txBits, rxBits)
numerr = 0

Recover HT-SIG Using Zero-Forcing Equalizer

Create a wlanHTConfig object having a channel bandwidth of 40 MHz. Use the object to
create an HT-SIG field.

cfg = wlanHTConfig('ChannelBandwidth', 'CBW40"');
[txSig,txBits] = wlanHTSIG(cfg);

Pass the transmitted HT-SIG through an AWGN channel.

awgnChan = comm.AWGNChannel('NoiseMethod', 'Variance',
'Variance',0.1);

rxSig = awgnChan(txSig);

Use a zero-forcing equalizer by creating a wlanRecoveryConfig object with its
EqualizationMethod property set to 'ZF"'.

cfgRec = wlanRecoveryConfig('EqualizationMethod','ZF"');

Recover the HT-SIG field. Verify that the received information has no bit errors.

wlanHTSIGRecover

rxBits = wlanHTSIGRecover(rxSig,ones(104,1),0.1, 'CBW40',cfgRec);
biterr(txBits, rxBits)

ans = 0

Recover HT-SIG in 2x2 MIMO Channel
Recover HT-SIG in a 2x2 MIMO channel with AWGN. Confirm that the CRC check passes.

Configure a 2x2 MIMO TGn channel.

chanBW = 'CBW20"';

cfg = wlanHTConfig(
'ChannelBandwidth', chanBW,
'"NumTransmitAntennas', 2,
"NumSpaceTimeStreams',2);

Generate L-LTF and HT-SIG waveforms.

tXLLTF
tXHTSIG

wlanLLTF(cfg);
wlanHTSIG(cfg);

Set the sample rate to correspond to the channel bandwidth. Create a TGn 2x2 MIMO
channel without large scale fading effects.

fsamp = 20e6;

tgnChan = wlanTGnChannel('SampleRate', fsamp,
'LargeScaleFadingEffect', 'None',
'"NumTransmitAntennas', 2, .
'"NumReceiveAntennas',2);

Pass the L-LTF and HT-SIG waveforms through a TGn channel with white noise.

rxLLTF = awgn(tgnChan(txLLTF),20);
rxHTSIG = awgn(tgnChan(txHTSIG),20);

Demodulate the L-LTF signal. Generate a channel estimate by using the demodulated L-
LTE.

demodLLTF = wlanLLTFDemodulate(rxLLTF,chanBW,1);
chanEst = wlanLLTFChannelEstimate(demodLLTF, chanBW);

1-249

1 Functions — Alphabetical List

1-250

Recover the information bits, the CRC failure status, and the equalized symbols from the
received HT-SIG field.

[recHTSIGBits, failCRC,eqSym] = wlanHTSIGRecover (rxHTSIG,
chanEst,0.01, chanBW);

Verify that HT-SIG passed a CRC check by examining the status of failCRC.
failCRC
failCRC = logical
0
Because failCRC is 0, HT-SIG passed the CRC check.

Visualize the scatter plot of the equalized symbols, eqSym.

scatterplot(eqSym(:))

wlanHTSIGRecover

Scatter plot
'
i
1t "
g'l-'l-
0.5
o
=
©
= 0
[y
=
=)
0.5
At '_ ‘?"
-1 0.5 0 0.5
In-Phase

Input Arguments

rxSig — Received HT-SIG field
matrix

Received HT-SIG field, specified as an Ng-by-Ny matrix. Ng is the number of samples and

increases with channel bandwidth.

Channel Bandwidth

Ns

'CBW20'

160

1-251

1 Functions — Alphabetical List

1-252

Channel Bandwidth Ng

'CBW40' 320

Ng is the number of receive antennas.

Data Types: double

chEst — Channel estimate
vector | 3-D array

Channel estimate, specified as an Ngr-by-1-by-Ny array. Ngr is the number of occupied
subcarriers and increases with channel bandwidth.

Channel Bandwidth Ngr
'CBW20' 52
'CBW40' 104

Npy is the number of receive antennas.
The channel estimate is based on the “L-LTF” on page 1-256.

noiseVarEst — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar.

Data Types: double

cbw — Channel bandwidth
"CBW20' | 'CBW40O"

Channel bandwidth in MHz, specified as 'CBW20"' or 'CBW40".
Data Types: char | string

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters, specified as a wlanRecoveryConfig object. The function uses
these properties.

wlanHTSIGRecover

Note If cfgRec is not provided, the function uses the default values of the
wlanRecoveryConfig object.

OFDMSymbol0ffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbol0ffset =0
represents the start of the cyclic prefix and OFDMSymbol0ffset = 1 represents the end
of the cyclic prefix.

- Cyclic Prefix (CP)

Data
~ | %
/ ' Y
CP
by
OFDMSymbolOffset = X * Rx FFT
Minimum OFDMSymbolOffset =0 Rx FFT
Maximum OFDMSymbolOffset =1 | 1 Rx FFT

Data Types: double

EqualizationMethod — Equalization method
"MMSE"' (default) | ' ZF'

Equalization method, specified as 'MMSE"' or 'ZF'.

* 'MMSE' indicates that the receiver uses a minimum mean square error equalizer.

* 'ZF' indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'
Data Types: char | string

1-253

1 Functions — Alphabetical List

1-254

PilotPhaseTracking — Pilot phase tracking
"PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

* 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

* 'None' — Pilot phase tracking does not occur.

Data Types: char | string

Output Arguments

recBits — Recovered HT-SIG information
vector

Recovered HT-SIG information bits, returned as a 48-element column vector. The number
of elements corresponds to the length of the HT-SIG field.

failCRC — CRC failure status
true | false

CRC failure status, returned as a logical scalar. If HT-SIG fails the CRC check, failCRC is
true.

eqSym — Equalized symbols
matrix

Equalized symbols, returned as a 48-by-2 matrix corresponding to 48 data subcarriers
and 2 OFDM symbols.

cpe — Common phase error
column vector

Common phase error in radians, returned as a 2-by-1 column vector.

wlanHTSIGRecover

Definitions

HT-SIG

The high throughput signal (HT-SIG) field is located between the L-SIG field and HT-STF
and is part of the HT-mixed format preamble. It is composed of two symbols, HT-SIG; and
HT-SIG,.

Legacy Preamble HT Preamble Data

Service Field

HT- | HT-
SIG1 | sIG2

4pus 4dus

HT-SIG carries information used to decode the HT packet, including the MCS, packet
length, FEC coding type, guard interval, number of extension spatial streams, and
whether there is payload aggregation. The HT-SIG symbols are also used for auto-
detection between HT-mixed format and legacy OFDM packets.

1-255

1 Functions — Alphabetical List

1-256

Medulation and HT Length

Coding Scheme

LSB MSE
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

LSB MSE
001 2 3 4 5 &

- CBW 20/40

HT-SIG,

CRC Tail Bits

Mumber of Extension
w Spatial Streams

c7 co
10 11 12 13 14 15 16 17 18 19 20 N1 22 23

= Mot Sounding
~ Reserved

w Aggregation
a FEC CODING
~ SHORT Gl
= LSE

= Smoothing
= LSB
o STBC

HT-SIG,

Refer to IEEE Std 802.11-2012, Section 20.3.9.4.3 for a detailed description of the HT-SIG
field.

L-LTF

The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP legacy
preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

wlanHTSIGRecover

Legacy Preamble

L-LTF

TLons

Channel estimation, fine frequency offset estimation, and fine symbol timing offset
estimation rely on the L-LTF.

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The CP consists of the second half of the long training symbol.

L-LTF
cP c1 Cc2
Tauz Teer Terr

The L-LTF duration varies with channel bandwidth.

1-257

1 Functions — Alphabetical List

1-258

Channel Subcarrier Fast Fourier Cyclic Prefix or |L-LTF Duration
Bandwidth Frequency Transform Training (Twong = Tarz +
(MHz) Spacing, A¢ (FFT) Period Symbol Guard |2 X Tger)
(kHz) (Teer = 1/ Af) |Interval (GI2)

Duration

(Teiz = Trer / 2)
20, 40, 80, and |[312.5 3.2 us 1.6 ps 8 us
160
10 156.25 6.4 us 3.2 us 16 ps
5 78.125 12.8 us 6.4 us 32 us
References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

wlanHTConfig | wlanHTSIG | wlanRecoveryConfig

Introduced in R2015b

wlanHTSTF

wlanHTSTF

Generate HT-STF waveform

Syntax

y = wlanHTSTF(cfg)

Description

y = wlanHTSTF(cfg) generates an “HT-STF” on page 1-262!? time-domain waveform
for “HT-mixed” on page 1-262 format transmissions, given the parameters specified in
cfg.

Examples

Generate HT Short Training Field

Create a wlanHTConfig object with a 40 MHz bandwidth.

cfg = wlanHTConfig('ChannelBandwidth', 'CBW40"');

Generate an HT-STFE. The function returns a complex output of 160 samples.

stf = wlanHTSTF(cfg);
size(stf)

ans = 1x2

160 1

Change the channel bandwidth to 20 MHz and create a new HT-STFE.

12. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1-259

1 Functions — Alphabetical List

cfg.ChannelBandwidth = 'CBW20';
stf = wlanHTSTF(cfg);

Verify that the number of samples has been halved due to the bandwidth reduction.
size(stf)
ans = Ix2

80 1

Input Arguments

cfg — Format configuration
wlanHTConfig object

Format configuration, specified as a wlanHTConfig object. The wlanHTSTF function uses
these properties.

ChannelBandwidth — Channel bandwidth
'CBW20"' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20"' or 'CBW40'.
Data Types: char | string

NumTransmitAntennas — Number of transmit antennas
1 (default) |23 |4

Number of transmit antennas, specified as 1, 2, 3, or 4.

Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) |23 |4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.

Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

1-260

wlanHTSTF

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
"Custom'. The default value 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

Data Types: char | string

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to

rotate and scale the constellation mapper output vector. This property applies when the
SpatialMapping property is set to 'Custom'. The spatial mapping matrix is used for
beamforming and mixing space-time streams over the transmit antennas.

* When specified as a scalar, NumTransmitAntennas = NumSpaceTimeStreams =1
and a constant value applies to all the subcarriers.

* When specified as a matrix, the size must be (Ngrs + Ngss)-by-Nr. Ngrg is the number
of space-time streams. Nggg is the number of extension spatial streams. N7 is the
number of transmit antennas. The spatial mapping matrix applies to all the
subcarriers. The first Ngrs and last Nggg rows apply to the space-time streams and
extension spatial streams respectively.

* When specified as a 3-D array, the size must be Ngr-by-(Ngrs + Ngsg)-by-Nr. Ngr is the
sum of the data and pilot subcarriers, as determined by ChannelBandwidth. Ngrg is
the number of space-time streams. Nzgg is the number of extension spatial streams. Nt
is the number of transmit antennas. In this case, each data and pilot subcarrier can
have its own spatial mapping matrix.

The table shows the ChannelBandwidth setting and the corresponding Ngr.

ChannelBandwidth Ngr
'CBW20' 56
'CBW40' 114

The calling function normalizes the spatial mapping matrix for each subcarrier.

Example: [0.5 0.3; 0.4 0.4; 0.5 0.8] represents a spatial mapping matrix having
three space-time streams and two transmit antennas.

Data Types: double
Complex Number Support: Yes

1-261

1 Functions — Alphabetical List

1-262

Output Arguments

y — HT-STF waveform
matrix

HT-STF waveform, returned as an Ng-by-N; matrix. N is the number of samples, and Ny is
the number of transmit antennas.

Data Types: double

Definitions

HT-STF

The high throughput short training field (HT-STF) is located between the HT-SIG and HT-
LTF fields of an HT-mixed packet. The HT-STF is 4 ps in length and is used to improve
automatic gain control estimation for a MIMO system. For a 20 MHz transmission, the
frequency sequence used to construct the HT-STF is identical to that of the L-STF. For a
40 MHz transmission, the upper subcarriers of the HT-STF are constructed from a
frequency-shifted and phase-rotated version of the L-STF.

Legacy Preamble HT Preamble Data

Service Field

HT-
STF

4pus

HT-mixed

As described in IEEE Std 802.11-2012, Section 20.1.4, high throughput mixed (HT-mixed)
format packets contain a preamble compatible with IEEE Std 802.11-2012, Section 18
and Section 19 receivers. Non-HT (Section 18 and Section19) STAs can decode the non-
HT fields (L-STE L-LTF, and L-SIG). The remaining preamble fields (HT-SIG, HT-STE, and
HT-LTF) are for HT transmission, so the Section 18 and Section 19 STAs cannot decode
them. The HT portion of the packet is described in IEEE Std 802.11-2012, Section
20.3.9.4. Support for the HT-mixed format is mandatory.

wlanHTSTF

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and

metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHTConfig | wlanHTLTF | wlanHTSIG | wlanLSTF

Introduced in R2015b

1-263

1 Functions — Alphabetical List

wlanLLTF

Generate L-LTF waveform

Syntax

y = wlanLLTF(cfg)

Description

y = wlanLLTF(cfg) generates an “L-LTF” on page 1-267'3 time-domain waveform for
the specified configuration object.

Examples

Generate L-LTF Waveform

Generate the L-LTF for a 40 MHz single antenna VHT packet.

cfgVHT = wlanVHTConfig('ChannelBandwidth', 'CBW40');
y = wlanLLTF(cfgVHT);

size(y)

ans = 1x2
320 1

plot(abs(y))

xLlabel('Samples"')
ylabel('Amplitude")

13. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1-264

wlanLLTF

1.5 T T T T T T

1.4

1.2

=4

Amplitude
o
[u]

0.4

0.2 '
0 50 100 150 200 250 300 350

Samples

The output L-LTF waveform contains 320 time-domain samples for a 40 MHz channel
bandwidth.

Input Arguments

cfg — Format configuration
wlanVHTConfig object | wlanHTConfig object | wlanNonHTConfig object

Format configuration, specified as a wlanVHTConfig, wlanHTConfig, or
wlanNonHTConf1ig object. For a specified format, the wlanLLTF function uses only the
object properties indicated.

1-265

1 Functions — Alphabetical List

Transmission Format Configuration Object Applicable Object
Properties
VHT wlanVHTConfig ChannelBandwidth,
NumTransmitAntennas
HT wlanHTConfig ChannelBandwidth,
NumTransmitAntennas
non-HT wlanNonHTConfig ChannelBandwidth,
See note. NumTransmitAntennas
Note:
1 For non-HT format, when channel bandwidth is 5 MHz or 10 MHz,
NumTransmitAntennas is not applicable because only one transmit antenna is
permitted.

Example: wlanVHTConfig

Output Arguments

y — L-LTF time-domain waveform
matrix

“L-LTF” on page 1-267 time-domain waveform, returned as an Ng-by-N; matrix. Ny is the
number of time-domain samples, and Ny is the number of transmit antennas.

Ny is proportional to the channel bandwidth. The time-domain waveform consists of two

symbols.

ChannelBandwidth Ng
"CBW5', 'CBW1O', 'CBW20' 160
'CBW40' 320
'CBW80' 640
'CBW160" 1280

Data Types: double
Complex Number Support: Yes

1-266

wlanLLTF

Definitions
L-LTF

The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP legacy
preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

Legacy Preamble

L-LTF

TLCINS

Channel estimation, fine frequency offset estimation, and fine symbol timing offset
estimation rely on the L-LTF.

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The CP consists of the second half of the long training symbol.

L-LTF
cP Cc1 c2
Tai Terr Teer

The L-LTF duration varies with channel bandwidth.

1-267

1 Functions — Alphabetical List

Channel Subcarrier Fast Fourier Cyclic Prefix or |L-LTF Duration
Bandwidth Frequency Transform Training (Twong = Tarz +
(MHz) Spacing, A¢ (FFT) Period Symbol Guard |2 X Tger)
(kHz) (Teer = 1/ Af) |Interval (GI2)

Duration

(Teiz = Trer / 2)
20, 40, 80, and |[312.5 3.2 us 1.6 ps 8 us
160
10 156.25 6.4 us 3.2 us 16 ps
5 78.125 12.8 ps 6.4 ps 32 ps
Algorithms

The “L-LTF” on page 1-267 is two OFDM symbols long and follows the L-STF of the
preamble in the packet structure for the VHT, HT, and non-HT formats. For algorithm
details, refer to IEEE Std 802.11ac-2013 [1], Section 22.3.8.2.3 and IEEE Std

802.11-2012 [2], Section 20.3.9.3.4.

References

[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[2] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

wlanLLTF

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHTConfig | wlanLLTFChannelEstimate | wlanLLTFDemodulate | wlanLSIG |
wlanLSTF | wlanNonHTConfig | wlanVHTConfig

Introduced in R2015b

1-269

1 Functions — Alphabetical List

1-270

wlanLLTFDemodulate

Demodulate L-LTF waveform

Syntax

wlanLLTFDemodulate(x, cbw)
wlanLLTFDemodulate(x,cfg)
wlanLLTFDemodulate(,symOffset)

y
Yy
Yy

Description

y = wlanLLTFDemodulate(x, cbw) returns the demodulated “L-LTF” on page 1-273
waveform given time-domain input signal x and channel bandwidth cbw.

y = wlanLLTFDemodulate(x,cfg) returns the demodulated L-LTF given the format
configuration object, cfg.

y = wlanLLTFDemodulate(,symOffset) specifies the OFDM symbol offset,
symOffset, using any of the arguments from the previous syntaxes.

Examples

Demodulate L-LTF for Non-HT Format Transmission

Demodulate the L-LTF used in a non-HT OFDM transmission, after passing the L-LTF
through an AWGN channel.

Create a non-HT configuration object and use it to generate an L-LTF signal.

cfg = wlanNonHTConfig;
txSig = wlanLLTF(cfg);

14. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

wlanLLTFDemodulate

Pass the L-LTF signal through an AWGN channel. Demodulate the received signal.

rxSig = awgn(txSig,15, 'measured');
y = wlanLLTFDemodulate(rxSig, 'CBW20"');

Demodulate L-LTF for VHT Format Transmission

Demodulate the L-LTF used in a VHT transmission, after passing the L-LTF through an
AWGN channel.

Create a VHT configuration object and use it to generate an L-LTF signal.

cfg = wlanVHTConfig;
txSig = wlanLLTF(cfg);

Pass the L-LTF signal through an AWGN channel.
rxSig = awgn(txSig,5);
Demodulate the received L-LTF using the information from the wlanVHTConfig object.

y = wlanLLTFDemodulate(rxSig,cfqg);

Demodulate L-LTF with OFDM Symbol Offset

Demodulate the L-LTF for the HT-mixed transmission format, given a custom OFDM
symbol offset.

Set the channel bandwidth to 40 MHz and the OFDM symbol offset to 1. That way, the
FFT takes place after the guard interval.

cbw = 'CBW40';
ofdmSymOffset = 1;

Create an HT configuration object and use it to generate an L-LTF signal.

cfg = wlanHTConfig('ChannelBandwidth', cbw);
txSig = wlanLLTF(cfg);

Pass the L-LTF signal through an AWGN channel.

1-271

1 Functions — Alphabetical List

rxSig = awgn(txSig,10);
Demodulate the received L-LTF using a custom OFDM symbol offset.
y = wlanLLTFDemodulate(rxSig, 'CBW40',ofdmSymOffset);

Input Arguments

x — Time-domain input signal
vector | matrix

Time-domain input signal corresponding to the L-LTF of the “PPDU” on page 1-275,
specified as an Ng-by-Ny vector or matrix. Ng is the number of samples and Ny is the
number of receive antennas.

Ng is proportional to the channel bandwidth. The time-domain waveform consists of two

symbols.

ChannelBandwidth N
"CBW5', 'CBW10"', 'CBW20' 160
'CBW40' 320
'CBW80O 640
'CBW160" 1280

Data Types: double

cbw — Channel bandwidth
"CBW5' | 'CBW10O' | 'CBW20' | 'CBW40' | 'CBW8O' | 'CBW160"

Channel bandwidth in MHz, specified as 'CBW5', 'CBW10', 'CBW20"', 'CBW40",
'CBW8O', or 'CBW160"'.

Data Types: char | string

cfg — Format information
wlanNonHTConfig | wlanHTConfig | wlanVHTConfig

Format information, specified as a WLAN configuration object. To create these objects,
see wlanNonHTConfig, wlanHTConfig, or wlanVHTConfig.

1-272

wlanLLTFDemodulate

symOffset — OFDM symbol offset
0.75 (default) | real scalar from 0 to 1

OFDM symbol offset as a fraction of the cyclic prefix length, specified as a real scalar
from 0 to 1.

Data Types: double

Output Arguments

y — Demodulated L-LTF signal
3-D OFDM symbol array

Demodulated L-LTF signal, returned as an Ngr-by-Ngyw-by-Ny array. Ngr is the number of
occupied subcarriers, Ngyy is the number of OFDM symbols, and Ny is the number of
receive antennas. For the L-LTE Ngyy is always 2.

Ngr varies with channel bandwidth.

ChannelBandwidth Number of Occupied Subcarriers (Ngy)
'CBW20', 'CBW10"', 'CBW5' 52

'CBW40' 104

'CBW80O' 208

'CBW160' 416

Definitions

L-LTF

The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP legacy
preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

1-273

1 Functions — Alphabetical List

Legacy Preamble

L-LTF

TLons

Channel estimation, fine frequency offset estimation, and fine symbol timing offset
estimation rely on the L-LTF.

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The CP consists of the second half of the long training symbol.

L-LTF
cP c1 Cc2
Tauz Teer Terr

The L-LTF duration varies with channel bandwidth.

1-274

wlanLLTFDemodulate

Channel Subcarrier Fast Fourier Cyclic Prefix or |L-LTF Duration
Bandwidth Frequency Transform Training (Twong = Tarz +
(MHz) Spacing, A¢ (FFT) Period Symbol Guard |2 X Tger)
(kHz) (Teer = 1/ Af) |Interval (GI2)
Duration
(Teiz = Trer / 2)
20, 40, 80, and |[312.5 3.2 us 1.6 ps 8 us
160
10 156.25 6.4 us 3.2 us 16 ps
5 78.125 12.8 ps 6.4 ps 32 ps
PPDU

The PLCP protocol data unit (PPDU) is the complete “PLCP” on page 1-275 frame,
including PLCP headers, MAC headers, the MAC data field, and the MAC and PLCP

trailers [2].

PLCP

The physical layer convergence procedure (PLCP) is the upper component of the physical
layer in 802.11 networks. Each physical layer has its own PLCPE which provides auxiliary
framing to the MAC [2].

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[2] Gast, Matthew S. 802.11n: A Survival Guide. Sebastopol, CA: O’Reilly Media Inc.,
2012, p. 120.

1-275

1 Functions — Alphabetical List

1-276

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanLLTF | wlanLLTFChannelEstimate

Introduced in R2015b

wlanLSIG

wlanLSIG

Generate L-SIG waveform

Syntax

[y, bits] = wlanLSIG(cfgFormat)

Description

[y, bits] = wlanLSIG(cfgFormat) generates an “L-SIG” on page 1-281'° time-
domain waveform using the specified configuration ohject.

Examples

Generate L-SIG Waveform for 80 MHz VHT Packet

Generate the L-SIG waveform for an 80 MHz VHT transmission format packet.

cfgVHT = wlanVHTConfig;
cfgVHT.ChannelBandwidth = 'CBW80';
1sigOut = wlanLSIG(cfgVHT);
size(1lsigOut)

ans = 1Ix2

320 1

The L-SIG waveform returned contains one symbol with 320 complex samples for an 80
MHz channel bandwidth.

15. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1-277

1 Functions — Alphabetical List

1-278

Extract Rate Information from L-SIG

Create a non-HT configuration object. The default MCS is 0.

cfg = wlanNonHTConfig

cfg =
wlanNonHTConfig with properties:

Modulation: 'OFDM'
ChannelBandwidth: 'CBW20'
MCS: ©
PSDULength: 1000
NumTransmitAntennas: 1

Generate the L-SIG waveform and information bits. Extract the rate from the returned
bits. The rate information is contained in the first four bits.

[y,bits] = wlanLSIG(cfqg);
rateBits = bits(1:4)
rateBits = 4x1 int8 column vector
1
1
0
1

As defined in IEEE Std 802.11™-2012, Table 18-6, a value of [1 1 @ 1] corresponds to a
rate of 6 Mbps for 20 MHz channel spacing.

Change MCS to 7 then regenerate the L-SIG waveform and information bits. Extract the
rate from the returned bits and analyze. The rate information is contained in the first four
bits.

cfg.MCS = 7

cfg =
wlanNonHTConfig with properties:

Modulation: 'OFDM'
ChannelBandwidth: 'CBW20'
MCS: 7

wlanLSIG

PSDULength:
NumTransmitAntennas:

[y,bits]

rateBits bits(1:4)

wlanLSIG(cfg);

1000
1

rateBits = 4x1 int8 column vector

[l O N o)

As defined in IEEE Std 802.11-2012, Table 18-6, a value of [0 © 1 1] corresponds to a
rate of 54 Mbps for 20 MHz channel spacing.

Input Arguments

cfgFormat — Format configuration
wlanVHTConfig object | wlanHTConfig object | wlanNonHTConfig object

Format configuration, specified as a wlanVHTConfig, wlanHTConfig, or
wlanNonHTConfig object. For a specified format, the wlanLSIG function uses only the

object properties indicated.

Transmission Format

Configuration Object

Applicable Object
Properties

VHT

wlanVHTConfig

ChannelBandwidth,
NumUsers,
NumTransmitAntennas,
NumSpaceTimeStreams,
STBC, MCS,
ChannelCoding,
APEPLength,
GuardInterval

1-279

1 Functions — Alphabetical List

Transmission Format Configuration Object Applicable Object
Properties
HT wlanHTConfig ChannelBandwidth,
NumTransmitAntennas,
NumSpaceTimeStreams,
MCS, GuardInterval,
ChannelCoding,
PSDULength
non-HT wlanNonHTConfig ChannelBandwidth,
Modulation, MCS,
See note. PSDULength,
NumTransmitAntennas
Note:
1 Only OFDM modulation is supported for a wlanNonHTConfig object input.
2 For non-HT format, when channel bandwidth is 5 MHz or 10 MHz,
NumTransmitAntennas is not applicable because only one transmit antenna is
permitted.

Example: wlanVHTConfig

Output Arguments

y — L-SIG time-domain waveform
matrix

“L-SIG” on page 1-281 time-domain waveform, returned as an Ng-by-N; matrix. Ny is the
number of time-domain samples, and Ny is the number of transmit antennas.

N is proportional to the channel bandwidth.

ChannelBandwidth Ng
"CBW5', 'CBW1O', 'CBW20" 80
'CBW40' 160
'CBW80O' 320
'CBW160' 640

1-280

wlanLSIG

Data Types: double
Complex Number Support: Yes

bits — Signaling bits
column vector

Signaling bits from the legacy signal field, returned as a 24-by-1 bit column vector. See
“L-SIG” on page 1-281 for the bit field description.

Data Types: int8

Definitions

L-SIG

The legacy signal (L-SIG) field is the third field of the 802.11 OFDM PLCP legacy
preamble. It consists of 24 bits that contain rate, length, and parity information. The L-
SIG is a component of VHT, HT, and non-HT PPDUs. It is transmitted using BPSK
modulation with rate 1/2 binary convolutional coding (BCC).

Legacy Preamble

L-5IG

TSIEN.F\._

The L-SIG is one OFDM symbol with a duration that varies with channel bandwidth.

1-281

1 Functions — Alphabetical List

Channel Subcarrier Fast Fourier Guard Interval |L-SIG duration
Bandwidth frequency Transform (Gl) Duration |[(TsgnaL = Ta +
(MHz) spacing, A¢ (FFT) period (T = Teer / 4) | Teer)
(kHz) (Terr = 1/ A¢)
20, 40, 80, and |[312.5 3.2 s 0.8 us 4 ps
160
10 156.25 6.4 us 1.6 ps 8 us
5 78.125 12.8 ps 3.2 us 16 us
The L-SIG contains packet information for the received configuration,
RATE LENGTH SIGNAL TATL
(4 bits) (12 bits) (6 bits)
FE1 E? R3 F4| R |LSE MSB| P o =07 =07 0" 0" 0"
t]|1|2|3 4 ﬁ|6|?|3|9|1D|11|11|13 |14|15|1|5 17 18|19|ED|11|22|23
Transmit Order
-

» Bits 0 through 3 specify the data rate (modulation and coding rate) for the non-HT

format.
Rate (bits | Modulation | Coding rate Data Rate (Mb/s)
0-3) (R) 20 MHz 10 MHz 5 MHz
channel channel channel
bandwidth | bandwidth | bandwidth
1101 BPSK 1/2 6 3 1.5
1111 BPSK 3/4 9 4.5 2.25
0101 QPSK 1/2 12 6 3
0111 QPSK 3/4 18 9 4.5
1001 16-QAM 1/2 24 12
1011 16-QAM 3/4 36 18
0001 64-QAM 2/3 48 24 12

1-282

wlanLSIG

Rate (bits | Modulation | Coding rate Data Rate (Mb/s)
0-3) (R) 20 MHz 10 MHz 5 MHz
channel channel channel
bandwidth | bandwidth | bandwidth
0011 64-QAM 3/4 54 27 13.5

For HT and VHT formats, the L-SIG rate bitsaresetto '1 1 0 1'. Data rate
information for HT and VHT formats is signaled in format-specific signaling fields.

* Bit 4 is reserved for future use.
* Bits 5 through 16:

* For non-HT, specify the data length (amount of data transmitted in octets) as
described in IEEE Std 802.11-2012, Table 18-1 and Section 9.23.4.

* For HT-mixed, specify the transmission time as described in IEEE Std 802.11-2012,
Section 20.3.9.3.5 and Section 9.23.4.

» For VHT, specify the transmission time as described in IEEE Std 802.11ac-2013,
Section 22.3.8.2.4.

* Bit 17 has the even parity of bits 0 through 16.

* Bits 18 through 23 contain all zeros for the signal tail bits.

Note Signaling fields added for HT (wlanHTSIG) and VHT (wlanVHTSIGA,
wlanVHTSIGB) formats provide data rate and configuration information for those formats.

¢ For the HT-mixed format, IEEE Std 802.11-2012, Section 20.3.9.4.3 describes HT-SIG

bit settings.

o For the VHT format, IEEE Std 802.11ac-2013, Section 22.3.8.3.3 and Section

22.3.8.3.6 describe bit settings for VHT-SIG-A and VHT-SIG-B, respectively.

Algorithms

The “L-SIG” on page 1-281 follows the L-STF and L-LTF of the preamble in the packet

structure.

1-283

1 Functions — Alphabetical List

VHT Format PPDU

SHORT Tione Tsicial Bus dus dus per VHT-LTF Symbol dus Data (non LDPC case only)
A r \ A A
| A— A el N
= —_— L- WVHT- VHT- LT WHT- | SERVICE Pad B-N
L-3TF Lt SIG SIG-A STF VHI-LIF SIG.8| 16 bits PSDU | bits | Tail bits
HT-mixed Fermat PPDU
Data HT-LTFs Extension HT-LTFs
Bus dps dys per LTF dys par LTF Data (non LODPC case only)
! A A A A
r VY W V
= o L: S HT- | HT- HT- | HT- HT- | SERVICE | Lory BN Pad
s e sic| "SIS Y sre| e |ure | Lre | | LrF | 18bits | PSPY | Tailbits | bits
Non-HT Format PPDU
Data
A
i ™\
= - L- |SERVICE | Lor G- Pad
L-5TF L-L SIG 16 bits sbu Tail bits | bits

For “L-SIG” on page 1-281 transmission processing algorithm details, see:

¢ VHT format - refer to IEEE Std 802.11ac-2013 [1], Section 22.3.8.2.4
¢ HT format - refer to IEEE Std 802.11-2012 [2], Sections 20.3.9.3.5
* non-HT format - refer to IEEE Std 802.11-2012 [2], Sections 18.3.4

The wlanLSIG function performs transmitter processing on the “L-SIG” on page 1-281
field and outputs the time-domain waveform.

1-284

wlanLSIG

L-SIG
(24 bits)

!

BCC Encoder

v

BCC
Interleaver

¥

Constellation
Mapper

Filot
Insertion

v

Symbol
Packing

¥

Replication
over CBW

¥ Ny

Cyclic Shift
Diversity

.| OFDM Modulation and

References

cyclic prefix addition

To Windowing and RF

[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands

below 6 GHz.

[2] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and

1-285

1 Functions — Alphabetical List

metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHTConfig | wlanLLTF | wlanLSIGRecover | wlanNonHTConfig |
wlanVHTConfig

Introduced in R2015b

1-286

wlanLSIGRecover

wlanLSIGRecover

Recover L-SIG information bits

Syntax
recBits = wlanLSIGRecover(rxSig,chEst,noiseVarEst, cbw)
recBits = wlanLSIGRecover(rxSig,chEst,noiseVarEst, cbw,cfgRec)

[recBits, failCheck] = wlanLSIGRecover()
[recBits, failCheck,eqSym] = wlanLSIGRecover()

[recBits, failCheck,eqSym,cpe] = wlanLSIGRecover()

Description

recBits = wlanLSIGRecover(rxSig,chEst,noiseVarEst, cbw) returns the
recovered “L-SIG” on page 1-295'¢ information bits, recBits, given the time-domain L-
SIG waveform, rxSig. Specify the channel estimate, chEst, the noise variance estimate,
noiseVarEst, and the channel bandwidth, cbw.

recBits = wlanLSIGRecover(rxSig,chEst,noiseVarEst, cbw,cfgRec) returns
information bits and specifies algorithm information using wlanRecoveryConfig object
cfgRec.

[recBits,failCheck] = wlanLSIGRecover() returns the status of a validity
check, failCheck, using the arguments from previous syntaxes.

[recBits, failCheck,eqSym] = wlanLSIGRecover() returns the equalized
symbols, eqSym.

[recBits, failCheck,eqSym,cpe] = wlanLSIGRecover() returns the common
phase error, cpe.

16. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1-287

1 Functions — Alphabetical List

Examples

Recover L-SIG Information from 2x2 MIMO Channel

Recover L-SIG information transmitted in a noisy 2x2 MIMO channel, and calculate the
number of bit errors present in the received information bits.

Set the channel bandwidth and sample rate.

chanBW = 'CBW40"';
fs = 40e6;

Create a VHT configuration object corresponding to a 40 MHz 2x2 MIMO channel.

vht = wlanVHTConfig(.
'ChannelBandwidth', chanBW,
'"NumTransmitAntennas', 2,
'"NumSpaceTimeStreams',2);

Generate the L-LTF and L-SIG field signals.

tXLLTF = wlanLLTF(vht);
[txLSIG, txLSIGData] = wlanLSIG(vht);

Create a 2x2 TGac channel and an AWGN channel with an SNR=10 dB.

tgacChan = wlanTGacChannel('SampleRate',fs, 'ChannelBandwidth', chanBW,
"NumTransmitAntennas', 2, 'NumReceiveAntennas',?2);

chNoise = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)',...
'SNR',10);

Pass the signals through the noisy 2x2 multipath fading channel.

rxLLTF
rxLSIG

chNoise(tgacChan(txLLTF));
chNoise(tgacChan(txLSIG));

Add additional white noise corresponding to a receiver with a 9 dB noise figure. The noise
variance is equal to k*T*B*F, where k is Boltzmann's constant, T is the ambient
temperature, B is the channel bandwidth (sample rate), and F is the receiver noise figure.

nVar = 10™((-228.6+10*%10g10(290) + 10*loglO(fs) + 9)/10);
rxNoise = comm.AWGNChannel('NoiseMethod', 'Variance', 'Variance',nVar);

1-288

wlanLSIGRecover

rxLLTF
rxLSIG

rxNoise(rxLLTF);
rxNoise(rxLSIG);

Perform channel estimation based on the L-LTE

demodLLTF = wlanLLTFDemodulate(rxLLTF,chanBW,1);
chanEst = wlanLLTFChannelEstimate(demodLLTF, chanBW);

Recover the L-SIG information bits.
rxLSIGData = wlanLSIGRecover(rxLSIG,chanEst,0.1,chanBW);

Verify that there are no bit errors in the recovered L-SIG data.
numErrors = biterr(txLSIGData, rxLSIGData)

numErrors = 0

Recover L-SIG with Zero Forcing Equalizer

Recover L-SIG information using the zero-forcing equalizer algorithm. Calculate the
number of bit errors in the received data.

Create an HT configuration object.

cfgHT = wlanHTConfig;

Create a recovery object with EqualizationMethod property set to zero forcing, ' ZF'.
cfgRec = wlanRecoveryConfig('EqualizationMethod','ZF');

Generate the L-SIG field and pass it through an AWGN channel.

[tXLSIG,txLSIGData] = wlanLSIG(cfgHT);
rxLSIG = awgn(txLSIG,20);

Recover the L-SIG using the zero-forcing algorithm set in cfgRec. The channel estimate
is a vector of ones because fading was not introduced.

rxLSIGData = wlanLSIGRecover(rxLSIG,ones(52,1),0.01, 'CBW20',cfgRec);

Verify that there are no bit errors in the recovered L-SIG data.

1-289

1 Functions — Alphabetical List

1-290

numErrors = biterr(txLSIGData, rxLSIGData)

numErrors = 0

Recover L-SIG from Phase and Frequency Offset
Recover the L-SIG from a channel that introduces a fixed phase and frequency offset.

Create a VHT configuration object corresponding to a 160 MHz SISO channel. Generate
the transmitted L-SIG field.

cfgVHT
txLSIG

wlanVHTConfig('ChannelBandwidth', 'CBW160"');
wlanLSIG(cfgVHT);

Create a recovery configuration object and disable pilot phase tracking.

cfgRec = wlanRecoveryConfig('PilotPhaseTracking', 'None');

To introduce a 45 degree phase offset and a 100 Hz frequency offset, create a phase and
frequency offset System object.

pfOffset = comm.PhaseFrequencyOffset('SampleRate',160e6, 'Phase0ffset', 45,
'FrequencyOffset',100);

Introduce phase and frequency offsets to the transmitted L-SIG. Pass the L-SIG through
an AWGN channel.

rxLSIG = awgn(pfOffset(txLSIG),20);

Recover the L-SIG information bits, the failure check status, and the equalized symbols.

[recLSIGData, failCheck,eqSym] = wlanLSIGRecover(rxLSIG,ones(416,1),0.01, 'CBW160"',cfgRe

Verify that the L-SIG passed the failure checks.
failCheck
failCheck = logical

0

Plot the equalized symbols. The 45 degree phase offset is visible.

wlanLSIGRecover

scatterplot(eqSym)
grid

Scatter plot
08 i i

061
0471

0.2r1

Quadrature
[}

-0.5 0 0.5
In-Phase

Input Arguments

rxSig — Received L-SIG field
vector | matrix

Received L-SIG field, specified as an Ng-by-Ny matrix. Ng is the number of samples, and
Npy is the number of receive antennas.

Ng is proportional to the channel bandwidth.

1-291

1 Functions — Alphabetical List

1-292

ChannelBandwidth Ng
"CBW5', 'CBW10', 'CBW20' 80
'CBW40' 160
'CBW80' 320
'CBW160 640

Data Types: double

chEst — Channel estimate
vector | 3-D array

Channel estimate, specified as an Ngr-by-1-by-Ny array. Ngr is the number of occupied
subcarriers, and Ny is the number of receive antennas.

Channel Bandwidth Ngr
"'CBW5', 'CBW10', 'CBW20' 52
'CBW40' 104
'CBW80O' 208
'CBW160' 416

Data Types: double

noiseVarEst — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar.
Data Types: double

cbw — Channel bandwidth
"CBW5' | 'CBW10O' | 'CBW20' | 'CBW40' | 'CBW8O' | 'CBW160'

Channel bandwidth in MHz, specified as 'CBW5', 'CBW10', 'CBW20"', 'CBW40",
'CBW8O', or 'CBW160"'.

Example: 'CBW80' corresponds to a channel bandwidth of 80 MHz
Data Types: char | string

wlanLSIGRecover

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters, specified as a wlanRecoveryConfig object. The function uses
these properties:

Note If cfgRec is not provided, the function uses the default values of the
wlanRecoveryConfig object.

OFDMSymbol0ffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbol0ffset =0
represents the start of the cyclic prefix and OFDMSymbo10ffset = 1 represents the end
of the cyclic prefix.

= Cyclic Prefix (CP)

) Dalta
CP
b
OFDMSymbolOffsat = X Rx FFT
Minimum OFDMSymbolOffset =0 Rx FFT
Maximum OFDMSymbolOffset =1 | 1 | Rx FFT

Data Types: double

EqualizationMethod — Equalization method
"MMSE"' (default) | ' ZF'

Equalization method, specified as '"MMSE"' or 'ZF"'.

1-293

1 Functions — Alphabetical List

1-294

* 'MMSE' indicates that the receiver uses a minimum mean square error equalizer.
* 'ZF' indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'

Data Types: char | string

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

* 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

* 'None' — Pilot phase tracking does not occur.

Data Types: char | string

Output Arguments

recBits — Recovered L-SIG information
binary vector

Recovered L-SIG information bits, returned as a 24-element column vector containing
binary data. The 24 elements correspond to the length of the L-SIG field.

Data Types: int8

failCheck — Failure check status
true | false

Failure check status, returned as a logical scalar. If L-SIG fails the parity check, or if its
first four bits do not correspond to one of the eight allowable data rates, failCheck is
true.

Data Types: logical

eqSym — Equalized symbols
vector

Equalized symbols, returned as 48-by-1 vector. There are 48 data subcarriers in the L-SIG
field.

wlanLSIGRecover

Data Types: double

cpe — Common phase error

column vector

Common phase error in radians, returned as a scalar.

Definitions

L-SIG

The legacy signal (L-SIG) field is the third field of the 802.11 OFDM PLCP legacy
preamble. It consists of 24 bits that contain rate, length, and parity information. The L-
SIG is a component of VHT, HT, and non-HT PPDUs. It is transmitted using BPSK
modulation with rate 1/2 binary convolutional coding (BCC).

Legacy Preamble

L-5IG

TSIEN.F\._

The L-SIG is one OFDM symbol with a duration that varies with channel bandwidth.

Channel Subcarrier Fast Fourier Guard Interval |L-SIG duration
Bandwidth frequency Transform (Gl) Duration |[(TsgnaL = T +
(MHz) spacing, A¢ (FFT) period (T = Teer / 8) | Teer)

(kHz) (Terr = 1/ A¢)
20, 40, 80, and |312.5 3.2 us 0.8 ps 4 us
160

1-295

1 Functions — Alphabetical List

Channel Subcarrier Fast Fourier Guard Interval |L-SIG duration
Bandwidth frequency Transform (Gl) Duration |[(TsgnaL = Ta +
(MHz) spacing, A¢ (FFT) period (T = Teer / 4) | Teer)
(kHz) (Terr = 1/ A¢)
10 156.25 6.4 us 1.6 ps 8 us
5 78.125 12.8 ps 3.2 us 16 ps
The L-SIG contains packet information for the received configuration,
RATE LENGTH SIGNATL TATL
(4 bits) (12 bits) (6 bits)
R1 R2 B3 R4| R LSB MSB| P fo= 0" =0 <0~ <0” =0~
t}|1|2|3 4 ﬁ|5|?|8|9|1D|11|11|13 |14|15|1|5 17 18|19|2D|11|21|23
Transmat Order
-

* Bits 0 through 3 specify the data rate (modulation and coding rate) for the non-HT

format.
Rate (bits | Modulation | Coding rate Data Rate (Mb/s)
0-3) (R) 20 MHz | 10 MHz 5 MHz
channel channel channel
bandwidth | bandwidth | bandwidth
1101 BPSK 1/2 6 3 1.5
1111 BPSK 3/4 9 4.5 2.25
0101 QPSK 1/2 12 6 3
0111 QPSK 3/4 18 4.5
1001 16-QAM 1/2 24 12
1011 16-QAM 3/4 36 18
0001 64-QAM 2/3 48 24 12
0011 64-QAM 3/4 54 27 13.5

1-296

wlanLSIGRecover

For HT and VHT formats, the L-SIG rate bitsare setto '1 1 0 1'. Data rate
information for HT and VHT formats is signaled in format-specific signaling fields.

* Bit 4 is reserved for future use.
* Bits 5 through 16:
+ For non-HT, specify the data length (amount of data transmitted in octets) as
described in IEEE Std 802.11-2012, Table 18-1 and Section 9.23.4.

* For HT-mixed, specify the transmission time as described in IEEE Std 802.11-2012,
Section 20.3.9.3.5 and Section 9.23.4.

» For VHT, specify the transmission time as described in IEEE Std 802.11ac-2013,
Section 22.3.8.2.4.

* Bit 17 has the even parity of bits 0 through 16.
» Bits 18 through 23 contain all zeros for the signal tail bits.

Note Signaling fields added for HT (wlanHTSIG) and VHT (wlanVHTSIGA,
wlanVHTSIGB) formats provide data rate and configuration information for those formats.

¢ For the HT-mixed format, IEEE Std 802.11-2012, Section 20.3.9.4.3 describes HT-SIG
bit settings.

* For the VHT format, IEEE Std 802.11ac-2013, Section 22.3.8.3.3 and Section
22.3.8.3.6 describe bit settings for VHT-SIG-A and VHT-SIG-B, respectively.

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1-297

1 Functions — Alphabetical List

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanLLTF | wlanLLTFChannelEstimate | wlanLLTFDemodulate | wlanLSIG

Introduced in R2015b

1-298

wlanLSTF

wlanLSTF

Generate L-STF waveform

Syntax

y = wlanLSTF(cfg)

Description

y = wlanLSTF(cfg) generates an “L-STF” on page 1-302!7 time-domain waveform
using the specified configuration object.

Examples

Generate L-STF Waveform

Generate the L-STF waveform for a 40 MHz single antenna VHT packet.

Create a VHT configuration object. Use this object to generate the L-STF waveform.

cfgVHT = wlanVHTConfig('ChannelBandwidth', 'CBW40"');
y = wlanLSTF(cfgVHT);

size(y)

ans = 1x2
320 1

plot(abs(y))

xLlabel('Samples"')
ylabel('Amplitude")

17. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1-299

1 Functions — Alphabetical List

1.3 T T T T T T

AR RN

=4

Amplitude
=
w

=
[u]
i

=
-
1

06| 7

100 150 200 250 300 350
Samples

0.5 '

o
2

The output L-STF waveform contains 320 samples for a 40 MHz channel bandwidth.

Input Arguments

cfg — Format configuration
wlanVHTConfig object | wlanHTConfig object | wlanNonHTConfig object

Format configuration, specified as a wlanVHTConfig, wlanHTConfig, or

wlanNonHTConf1ig object. For a specified format, the wlanLSTF function uses only the
object properties indicated.

1-300

wlanLSTF

Transmission Format

Applicable Object Properties

VHT ChannelBandwidth,
NumTransmitAntennas
HT ChannelBandwidth,
NumTransmitAntennas
non-HT ChannelBandwidth,
See note. NumTransmitAntennas
Note:

1 For non-HT format, when channel bandwidth is 5 MHz or 10 MHz,

NumTransmitAntennas is not applicable because only one transmit antenna is
permitted.

Example: wlanVHTConfig

Output Arguments

y — L-STF time-domain waveform
matrix

(“L-STF” on page 1-302) time-domain waveform, returned as an Ng-by-Nt matrix. Ng is the
number of time-domain samples, and Ny is the number of transmit antennas.

Ng is proportional to the channel bandwidth. The time-domain waveform consists of two
symbols.

ChannelBandwidth Ng
"CBW5', 'CBW10', 'CBW20' 160
'CBW40' 320
'CBW8O' 640
'CBW160' 1280

Data Types: double
Complex Number Support: Yes

1-301

1 Functions — Alphabetical List

Definitions
L-STF

The legacy short training field (L-STF) is the first field of the 802.11 OFDM PLCP legacy
preamble. The L-STF is a component of VHT, HT, and non-HT PPDUs.

Legacy Preamble

L-5TF

TEHCIH‘T

The L-STF duration varies with channel bandwidth.

Channel Bandwidth |Subcarrier Fast Fourier L-STF Duration
(MHz) Frequency Transform (FFT) (Tshort = 10 X Tger /
Spacing, Ar (kHz) |Period 4)
(Terr = 1/ A¢)
20, 40, 80, and 160 |312.5 3.2 us 8 us
10 156.25 6.4 ps 16 ps
5 78.125 12.8 ps 32 us

Because the sequence has good correlation properties, it is used for start-of-packet
detection, for coarse frequency correction, and for setting the AGC. The sequence uses 12
of the 52 subcarriers that are available per 20 MHz channel bandwidth segment. For 5
MHz, 10 MHz, and 20 MHz bandwidths, the number of channel bandwidths segments is
1.

1-302

wlanLSTF

Algorithms

The “L-STF” on page 1-302 is two OFDM symbols long and is the first field in the packet
structure for the VHT, HT, and non-HT OFDM formats. For algorithm details, refer to
IEEE Std 802.11ac-2013 [1], Section 22.3.8.2.2.

References

[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHTConfig | wlanLLTF | wlanNonHTConfig | wlanVHTConfig

Introduced in R2015b

1-303

1 Functions — Alphabetical List

1-304

wlanNonHTConfig

Create non-HT format configuration object

Syntax

cfgNonHT
cfgNonHT

wlanNonHTConfig
wlanNonHTConfig(Name, Value)

Description

cfgNonHT = wlanNonHTConfig creates a configuration object that initializes
parameters for an IEEE 802.11 non-high throughput (non-HT) format “PPDU” on page 1-
311.

For non-HT, subcarrier spacing and subcarrier allocation have channel bandwidth
dependencies. For more information, see “OFDM PLCP Timing Parameters” on page 1-
309.

cfgNonHT = wlanNonHTConfig(Name,Value) creates a non-HT format configuration
object that overrides the default settings using one or more Name, Value pair arguments.

At runtime, the calling function validates object settings for properties relevant to the
operation of the function.

Examples

Create Non-HT Configuration Object with Default Settings

Create a non-HT configuration object with default settings. After creating the object
update the number of transmit antennas.

cfgNHT = wlanNonHTConfig

cfgNHT =
wlanNonHTConfig with properties:

wlanNonHTConfig

Modulation:
ChannelBandwidth:
MCS:

PSDULength:
NumTransmitAntennas:

Update the number of transmit antennas to two.

"OFDM'
'CBW20'
0

1000

1

cfgNHT.NumTransmitAntennas = 2

cfgNHT =

wlanNonHTConfig with properties:

Modulation:
ChannelBandwidth:
MCS:

PSDULength:
NumTransmitAntennas:

Create Non-HT Format Configuration Object

"OFDM'
'CBW20'
0

1000

2

Create a wlanNonHTConfig object for OFDM operation for a PSDU length of 2048 bytes.

cfgNHT = wlanNonHTConfig('Modulation', 'OFDM");

cfgNHT.PSDULength = 2048;

cfgNHT

cfgNHT =

wlanNonHTConfig with properties:

Modulation:
ChannelBandwidth:
MCS:

PSDULength:
NumTransmitAntennas:

"OFDM'
'CBW20'
0

2048

1

1-305

1 Functions — Alphabetical List

1-306

Create Non-HT Format Configuration Object for DSSS Modulation

Create a wlanNonHTConfig object for DSSS operation for a PSDU length of 2048 bytes.

cfgNHT = wlanNonHTConfig('Modulation', 'DSSS"', 'PSDULength',2048)

cfgNHT =
wlanNonHTConfig with properties:

Modulation: 'DSSS'
DataRate: '1Mbps'
LockedClocks: 1
PSDULength: 2048

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'Modulation', 'OFDM', 'MCS"', 7 specifies OFDM modulation with a
modulation and coding scheme of 7, which assigns 64QAM and a 3/4 coding rate for the
non-HT format packet.

Modulation — Modulation type for non-HT transmission
'OFDM' (default) | 'DSSS"

Modulation type for the non-HT transmission packet, specified as 'OFDM' or 'DSSS".
Data Types: char | string

ChannelBandwidth — Channel bandwidth
'CBW20 "' (default) | ' CBW10' | ' CBWS'

Channel bandwidth in MHz for OFDM, specified as 'CBW20"', 'CBW10', or 'CBW5"'. The
default value of ' CBW20' sets the channel bandwidth to 20 MHz.

wlanNonHTConfig

When channel bandwidth is 5 MHz or 10 MHz, only one transmit antenna is permitted
and NumTransmitAntennas is not applicable.

Data Types: char | string

MCS — OFDM modulation and coding scheme

0 (default) | integer from 0 to 7 | integer

OFDM modulation and coding scheme to use for transmitting the current packet,
specified as an integer from 0 to 7. The system configuration associated with an MCS
setting maps to the specified data rate.

MCS Mo_dula Coding (;oded (;oded _Data Data Rate (Mbps)
T suncar “orow ‘orow |20 w10 MRS
ier | symbol | symbol | o, 4yi | bandwi | bandwi
(Ngpsc) | (Nceps) | (Noees) | gith dth dth
0 BPSK 1/2 1 48 24 6 3 1.5
1 BPSK 3/4 1 48 36 9 4.5 2.25
2 QPSK 1/2 2 96 48 12 6 3
3 QPSK 3/4 2 96 72 18 9 4.5
4 16QAM 1/2 4 192 96 24 12 6
5 16QAM 3/4 4 192 144 36 18 9
6 64QAM 2/3 6 288 192 48 24 12
7 64QAM 3/4 6 288 216 54 27 13.5

See IEEE Std 802.11-2012, Table 18-4.

Data Types: double

DataRate — DSSS modulation data rate
"1Mbps ' (default) | '2Mbps' | '5.5Mbps' | '11Mbps"

DSSS modulation data rate, specified as ' 1Mbps ', '2Mbps"', '5.5Mbps ', or ' 11Mbps'.

* '1IMbps' uses differential binary phase shift keying (DBPSK) modulation with a 1

Mbps data rate.

* '2Mbps' uses differential quadrature phase shift keying (DQPSK) modulation with a 2

Mbps data rate.

1-307

1 Functions — Alphabetical List

* '5.5Mbps"' uses complementary code keying (CCK) modulation with a 5.5 Mbps data
rate.

* '11Mbps' uses complementary code keying (CCK) modulation with an 11 Mbps data
rate.

For IEEE Std 802.11-2012, Section 16, only ' 1Mbps' and '2Mbps' apply
Data Types: char | string

Preamble — DSSS modulation preamble type
‘Long' (default) | 'Short'

DSSS modulation preamble type, specified as 'Long' or 'Short'.

* When DataRateis '1Mbps"', the Preamble setting is ignored and 'Long"' is used.
* When DataRate is greater than ' 1Mbps', the Preamble property is available and
can be set to 'Long' or 'Short".

For IEEE Std 802.11-2012, Section 16, 'Short' does not apply.
Data Types: char | string

LockedClocks — Clock locking indication for DSSS modulation
true (default) | false

Clock locking indication for DSSS modulation, specified as a logical. Bit 2 of the SERVICE
field is the Locked Clock Bit. A true setting indicates that the PHY implementation
derives its transmit frequency clock and symbol clock from the same oscillator. For more
information, see IEEE Std 802.11-2012, Section 17.2.3.5 and Section 19.1.3.

Note

* IEEE Std 802.11-2012, Section 19.3.2.2, specifies locked clocks is required for all ERP
systems when transmitting at the ERP-PBCC rate or at a data rate described in Section
17. Therefore to model ERP systems, set LockedClocks to true.

Data Types: logical

PSDULength — Number of bytes carried in the user payload
1000 (default) | integer from 1 to 4095 | integer

1-308

wlanNonHTConfig

Number of bytes carried in the user payload, specified as an integer from 1 to 4095.

Data Types: double

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 8

Number of transmit antennas for OFDM, specified as a scalar integer from 1 to 8.

When channel bandwidth is 5 MHz or 10 MHz, NumTransmitAntennas is not applicable
because only one transmit antenna is permitted.

Data Types: double

Output Arguments

cfgNonHT — Non-HT PPDU configuration
wlanNonHTConfig object

Non-HT “PPDU” on page 1-311 configuration, returned as a wlanNonHTConfig object.
The properties of cfgNonHT are specified in wlanNonHTConfig.

Definitions

OFDM PLCP Timing Parameters

IEEE Std 802.11™-2012 [1], Section 18!8 specifies OFDM PLCP 20 MHz, 10 MHz, and 5
MHz channel bandwidth operation.

Timing parameters associated with the OFDM PLCP are listed in IEEE Std 802.11™-2012
[1], Table 18-5.

18. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1-309

1 Functions — Alphabetical List

Parameter Value 20 MHz 10 MHz 5 MHz channel
channel channel bandwidth
bandwidth bandwidth

Ngp: Number of |48 48 48 48

data subcarriers

Ngp: Number of (4 4 4 4

pilot subcarriers

Ngp: Number of |Ngp + Ngp 52 52 52

subcarriers,

total

Ag: Subcarrier |(Channel BWin |0.3125 MHz 0.15625 MHz 0.078125 MHz

frequency MHz) / 64 (=20/64) (=10/64) (=5/64)

spacing

Trpr: Inverse 1/Ag 3.2 ps 6.4 ps 12.8 ps

Fast Fourier

Transform

(IFFT) / Fast

Fourier

Transform (FFT)

period

Togeampre: PLCP | Tspogrr + Trong |16 ps 32 ps 64 ps

preamble

duration

TSIGNAL: Duration TGI + TFFT 40].].S 80].].S 160].IS

of the L-SIG

symbol

Tgr: GI duration |Tggr/4 0.8 us 1.6ps 3.2 us

TG12: Training TFFT/2 1.6 }JIS 3.2}18 6.4 }JIS

symbol GI

duration

Tsym: Symbol Tar + Trer 4 ps 8 us 16 ps

interval

Tsporr: L-STF 10 X Tgpp /4 8 us 16 ps 32 us

duration

wlanNonHTConfig

Parameter Value 20 MHz 10 MHz 5 MHz channel
channel channel bandwidth
bandwidth bandwidth

TLONG: L'LTF TGIZ + 2 X TFFT 8 115].6 }ls 32 }ls

duration

Note The standard refers to operation at:

* 10 MHz as “half-clocked”.
* 5 MHz as “quarter-clocked”.

PPDU

The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and

metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

1-311

1 Functions — Alphabetical List

See Also

Functions

wlanDMGConfig | wlanHTConfig | wlanS1GConfig | wlanVHTConfig |
wlanWaveformGenerator

Apps
Wireless Waveform Generator

Topics
“Packet Size and Duration Dependencies”

Introduced in R2015b

1-312

wlanNonHTData

wlanNonHTData

Generate non-HT-Data field waveform

Syntax

wlanNonHTData(psdu, cfg)
wlanNonHTData(psdu,cfg,scramInit)

y
y

Description

y = wlanNonHTData(psdu, cfg) generates the “non-HT-Data field” on page 1-3171°
time-domain waveform for the input “PSDU” on page 1-317 bits.

y = wlanNonHTData(psdu,cfg,scramInit) uses scramInit for the scrambler
initialization state.

Examples

Generate Non-HT-Data Waveform

Generate the waveform for a 20MHz non-HT-Data field for 36 Mbps.
Create a non-HT configuration object and assign MCS to 5.

cfg = wlanNonHTConfig('MCS',5);

Assign random data to the PSDU and generate the data field waveform.
psdu = randi([0 1],cfg.PSDULength*8,1);

y = wlanNonHTData(psdu,cfg);
size(y)

19. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1-313

1 Functions — Alphabetical List

1-314

ans = 1x2

4480 1

Input Arguments

psdu — PLCP service data unit
vector

PLCP service data unit (“PSDU” on page 1-317), specified as an Ny;-by-1 vector, where
Npiis = PSDULength x 8. “PSDU” on page 1-317 vector can range from 1 byte to 4095
bytes, as specified by PSDULength.

Data Types: double

cfg — Format configuration
wlanNonHTConfig object

Format configuration, specified as a wlanNonHTConfig object. The wlanNonHTData
function uses the wlanNonHTConfig object properties associated with the 'OFDM'
setting for Modulation.

Non-HT Format Configuration

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | ' CBW10' | ' CBWS'

Channel bandwidth in MHz for OFDM, specified as 'CBW20', 'CBW10', or 'CBW5"'. The
default value of ' CBW20' sets the channel bandwidth to 20 MHz.

When channel bandwidth is 5 MHz or 10 MHz, only one transmit antenna is permitted
and NumTransmitAntennas is not applicable.

Data Types: char | string

MCS — OFDM modulation and coding scheme
0 (default) | integer from 0 to 7 | integer

OFDM modulation and coding scheme to use for transmitting the current packet,
specified as an integer from 0 to 7. The system configuration associated with an MCS
setting maps to the specified data rate.

wlanNonHTData

MCS | Modula | Coding | Coded | Coded | Data Data Rate (Mbps)
tion Rate |bits per|bits per | bits per 20 MHz | 10 MHz | 5 MHz
subcarr| OFDM | OFDM | ponn6l| channel |channel
jer | symbol | symbol | pangwi | bandwi | bandwi
(Ngpsc) | (Nceps) | (Npges) | gth dth dth
0 BPSK 1/2 1 48 24 6 3 1.5
1 BPSK 3/4 1 48 36 9 4.5 2.25
2 QPSK 1/2 2 96 48 12 6 3
3 QPSK 3/4 2 96 72 18 9 4.5
4 16QAM 1/2 4 192 96 24 12 6
5 16QAM 3/4 4 192 144 36 18 9
6 64QAM 2/3 6 288 192 48 24 12
7 64QAM 3/4 6 288 216 54 27 13.5

See IEEE Std 802.11-2012, Table 18-4.
Data Types: double

PSDULength — Number of bytes carried in the user payload
1000 (default) | integer from 1 to 4095 | integer

Number of bytes carried in the user payload, specified as an integer from 1 to 4095.

Data Types: double

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 8

Number of transmit antennas for OFDM, specified as a scalar integer from 1 to 8.

When channel bandwidth is 5 MHz or 10 MHz, NumTransmitAntennas is not applicable
because only one transmit antenna is permitted.

Data Types: double

scramInit — Scrambler initialization state
93 (default) | integer from 1 to 127 | binary vector

1-315

1 Functions — Alphabetical List

Scrambler initialization state for each packet generated, specified as an integer from 1 to
127 or as the corresponding binary vector of length seven. The default value of 93 is the
example state given in IEEE Std 802.11-2012, Section L.1.5.2.

The scrambler initialization used on the transmission data follows the process described
in IEEE Std 802.11-2012, Section 18.3.5.5 and IEEE Std 802.11ad-2012, Section 21.3.9.
The header and data fields that follow the scrambler initialization field (including data
padding bits) are scrambled by XORing each bit with a length-127 periodic sequence
generated by the polynomial S(x) = x’+x*+1. The octets of the PSDU (Physical Layer
Service Data Unit) are placed into a bit stream, and within each octet, bit 0 (LSB) is first
and bit 7 (MSB) is last. The generation of the sequence and the XOR operation are shown
in this figure:

Data In

—®

x44—x34—x24—x1 -|-)

Scrambled Data Out

Conversion from integer to bits uses left-MSB orientation. For the initialization of the
scrambler with decimal 1, the bits are mapped to the elements shown.

Element (X7 X6)& x4 x3)& Xt

Bit Value |0 0 0 0 0 0 1

1-316

wlanNonHTData

To generate the bit stream equivalent to a decimal, use de2bi. For example, for decimal
1.

de2bi(1,7, 'left-msb')
ans =

0 0 0 0 0 0 1

Example: [1; 0; 1; 1; 1; 0; 1] conveys the scrambler initialization state of 93 as a
binary vector.

Data Types: double | int8

Output Arguments

y — Non-HT-Data field time-domain waveform
matrix

Non-HT-Data field time-domain waveform, returned as an Ng-by-Nt matrix. Ng is the
number of time domain samples, and Ny is the number of transmit antennas.

Definitions

PSDU

Physical layer convergence procedure (PLCP) service data unit (PSDU). This field is
composed of a variable number of octets. The minimum is 0 (zero) and the maximum is
2500. For more information, see IEEE Std 802.11™-2012, Section 15.3.5.7.

non-HT-Data field

The non-high throughput data (non-HT data) field is used to transmit MAC frames and is
composed of a service field, a PSDU, tail bits, and pad bits.

1-317

1 Functions — Alphabetical List

Legacy Preamble

Non-HT Data Field

Service
16 bits

PSDU
1-4095 bytes

Tail
G bits

Pad Bits
as
needed

* Service field — Contains 16 zeros to initialize the data scrambler.
* PSDU — Variable-length field containing the PLCP service data unit (PSDU).

* Tail — Tail bits required to terminate a convolutional code. The field uses six zeros for

the single encoding stream.

» Pad Bits — Variable-length field required to ensure that the non-HT data field

contains an integer number of symbols.

Algorithms

non-HT-Data Field Processing

The “non-HT-Data field” on page 1-317 follows the L-SIG in the packet structure. For
algorithm details, refer to IEEE Std 802.11-2012 [1], Section 18.3.5. The “non-HT-Data
field” on page 1-317 includes the user payload in the PSDU plus 16 service bits, 6 tail

bits, and additional padding bits as required to fill out the last OFDM symbol. The

wlanNonHTData function performs transmitter processing on the “non-HT-Data field” on

page 1-317 and outputs the time-domain waveform.

1-318

wlanNonHTData

Zeros
(16,1)

User Payload
(1,....40957"8

Zeros
(5 bits)

PHY zero
padding
(as needed)

v ¥

v

Service

PSDU

Tail bits

s

Sy

Data

v

Scrambler

v

Reset tail bits

v

BCC Encoder

v

BCC
Interleaver

v

Constellation
Iapper

Pilot
Insertion

v

Symbol
Packing

3 Nr

Cyclic Shift
Diversity

OFDM modulation and
cyclic prefix addition

—

To Windowing and RF

1-319

1 Functions — Alphabetical List

1-320

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanLSIG | wlanNonHTConfig | wlanNonHTDataRecover

Introduced in R2015b

wlanNonHTDataRecover

wlanNonHTDataRecover

Recover non-HT data

Syntax

recData = wlanNonHTDataRecover(rxSig, chEst,noiseVarEst,cfg)
recData = wlanNonHTDataRecover(rxSig,chEst,noiseVarEst,cfg,cfgRec)
[recData,eqSym] = wlanNonHTDataRecover()

[recData,eqSym,cpe] = wlanNonHTDataRecover()

Description

recData = wlanNonHTDataRecover(rxSig,chEst,noiseVarEst, cfg) returns the
recovered “Non-HT-Data field” on page 1-327%° bits, given received signal rxSig, channel
estimate data chEst, noise variance estimate noiseVarEst, and wlanNonHTConfig
object cfg.

Note This function only supports data recovery for OFDM modulation.

recData = wlanNonHTDataRecover(rxSig,chEst,noiseVarEst,cfg, cfgRec)
specifies the recovery algorithm parameters using wlanRecoveryConfig object
cfgRec.

[recData,eqSym] = wlanNonHTDataRecover() returns the equalized symbols,
eqSym, using the arguments from the previous syntaxes.

[recData,eqSym,cpe] = wlanNonHTDataRecover() also returns the common
phase error, cpe.

20. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1-321

1 Functions — Alphabetical List

Examples

Recover Non-HT Data Bits

Create a non-HT configuration object having a PSDU length of 2048 bytes. Generate the
corresponding data sequence.

cfg = wlanNonHTConfig('PSDULength',2048);

txBits = randi([0 1],8*cfg.PSDULength,1);

txSig = wlanNonHTData(txBits,cfg);

Pass the signal through an AWGN channel with a signal-to-noise ratio of 15 dB.
rxSig = awgn(txSig,15);

Recover the data and determine the number of bit errors.

rxBits = wlanNonHTDataRecover(rxSig,ones(52,1),0.05,cfg);
[numerr,ber] = biterr(rxBits,txBits)

numerr = 0

ber = 0

Recover Non-HT Data Bits Using Zero-Forcing Algorithm

Create a non-HT configuration object having a 1024-byte PSDU length. Generate the
corresponding non-HT data sequence.

cfg = wlanNonHTConfig('PSDULength',1024);

txBits = randi([0 1],8*cfg.PSDULength,1);

txSig = wlanNonHTData(txBits,cfg);

Pass the signal through an AWGN channel with a signal-to-noise ratio of 10 dB.
rxSig = awgn(txSig,10);

Create a data recovery object that specifies the use of the zero-forcing algorithm.

cfgRec = wlanRecoveryConfig('EqualizationMethod','ZF"');

1-322

wlanNonHTDataRecover

Recover the data and determine the number of bit errors.

rxBits = wlanNonHTDataRecover(rxSig,ones(52,1),0.1,cfg,cfgRec);
[numerr,ber] = biterr(rxBits, txBits)

numerr = 0

ber = 0

Recover Non-HT Data in Fading Channel
Configure a non-HT data object.

cfg = wlanNonHTConfig;

Generate and transmit a non-HT PSDU.

txPSDU = randi([0@ 1],8*cfg.PSDULength,1);
txSig = wlanNonHTData(txPSDU,cfg);

Generate an L-LTF for channel estimation.

txXLLTF = wlanLLTF(cfg);

Create an 802.11g channel with a 3 Hz maximum Doppler shift and a 100 ns RMS path
delay. Disable the reset before filtering option so that the L-LTF and data fields use the
same channel realization.

ch802 = comm.RayleighChannel('SampleRate',20e6, 'MaximumDopplerShift', 3, 'PathDelays', 10(
Pass the L-LTF and data signals through an 802.11g channel with AWGN.

rxLLTF = awgn(ch802(txLLTF),10);
rxSig = awgn(ch802(txSig),10);

Demodulate the L-LTF and use it to estimate the fading channel.

dLLTF
chEst

wlanLLTFDemodulate(rxLLTF,cfg);
wlanLLTFChannelEstimate(dLLTF,cfqg);

Recover the non-HT data using the L-LTF channel estimate and determine the number of
bit errors in the transmitted packet.

1-323

1 Functions — Alphabetical List

1-324

rxPSDU = wlanNonHTDataRecover(rxSig,chEst,0.1,cfg);
[numErr,ber] = biterr(txPSDU, rxPSDU)
numErr = 0

ber = 0

Input Arguments

rxSig — Received non-HT data signal
vector | matrix

Received non-HT data signal, specified as a matrix of size Ng-by-Ng. N is the number of
samples and Ny is the number of receive antennas. Ng can be greater than the length of
the data field signal.

Data Types: double

chEst — Channel estimate data
vector | 3-D array

Channel estimate data, specified as an Ngr-by-1-by-Ny array. Nt is the number of
occupied subcarriers, and Ny is the number of receive antennas.

Data Types: double

noiseVarEst — Noise variance estimate
nonnegative scalar

Estimate of the noise variance, specified as a nonnegative scalar.
Example: 0.7071
Data Types: double

cfg — Configure non-HT format parameters
wlanNonHTConfig object

Non-HT format configuration, specified as a wlanNonHTConfig object. The
wlanHTDataRecover function uses the following wlanNonHTConfig object properties:

wlanNonHTDataRecover

MCS — OFDM modulation and coding scheme
0 (default) | integer from 0 to 7 | integer

OFDM modulation and coding scheme to use for transmitting the current packet,
specified as an integer from 0 to 7. The system configuration associated with an MCS
setting maps to the specified data rate.

MCS | Modula | Coding | Coded (_:oded .Data Data Rate (Mbps)
"1 T ubdarr| oFom | oFom |20 MMz 0 ez 8
jer | symbol| symbol | pangwi | bandwi | bandwi
(NBPSC) (NCBPS) (NDBPS) dth dth dth
0 BPSK 1/2 1 48 24 6 3 1.5
1 BPSK 3/4 1 48 36 9 4.5 2.25
2 QPSK 1/2 2 96 48 12 6 3
3 QPSK 3/4 2 96 72 18 9 4.5
4 16QAM 1/2 4 192 96 24 12 6
5 16QAM 3/4 4 192 144 36 18 9
6 64QAM 2/3 6 288 192 48 24 12
7 64QAM 3/4 6 288 216 54 27 13.5

See [EEE Std 802.11-2012, Table 18-4.
Data Types: double

PSDULength — Number of bytes carried in the user payload
1000 (default) | integer from 1 to 4095 | integer

Number of bytes carried in the user payload, specified as an integer from 1 to 4095.

Data Types: double

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters, specified as a wlanRecoveryConfig object. The object
properties include:

1-325

1 Functions — Alphabetical List

OFDMSymbol10ffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbol0ffset =0
represents the start of the cyclic prefix and OFDMSymbol0ffset = 1 represents the end
of the cyclic prefix.

s Cyclic Prefix (CP)

Data
] I i,
CcP
X
OFDMSymbolOffsaet = X * Rx FFT
Minimum OFDMSymbolOffset =0 Rx FFT
Maximum OFDMSymbolOffset =1 | 1 | Rx FFT

Data Types: double

EqualizationMethod — Equalization method
'"MMSE ' (default) | ' ZF"'

Equalization method, specified as 'MMSE"' or 'ZF'.

* 'MMSE' indicates that the receiver uses a minimum mean square error equalizer.
* 'ZF' indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'
Data Types: char | string

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

1-326

wlanNonHTDataRecover

* 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

* 'None' — Pilot phase tracking does not occur.

Data Types: char | string

Output Arguments

recData — Recovered binary output data
binary column vector

Recovered binary output data, returned as a column vector of length 8 X Npgpy, where
Npgpy is the length of the PSDU in bytes. See wlanNonHTConfig for PSDULength details.

Data Types: int8

eqSym — Equalized symbols
column vector | matrix

Equalized symbols, returned as an Ngp-by-Ngyy matrix. Ngp is the number of data
subcarriers, and Ngyy is the number of OFDM symbols in the non-HT data field.

Data Types: double

cpe — Common phase error
column vector

Common phase error in radians, returned as a column vector having length Ngyy. Ngyy iS
the number of OFDM symbols in the “Non-HT-Data field” on page 1-327.

Definitions

Non-HT-Data field

The non-high throughput data (non-HT data) field is used to transmit MAC frames and is
composed of a service field, a PSDU, tail bits, and pad bits.

1-327

1 Functions — Alphabetical List

Legacy Preamble

Non-HT Data Field

Pad Bits
as
needed

Service PSDU Tail
16 bits 1-4095 bytes 6 bits

* Service field — Contains 16 zeros to initialize the data scrambler.
* PSDU — Variable-length field containing the PLCP service data unit (PSDU).

» Tail — Tail bits required to terminate a convolutional code. The field uses six zeros for
the single encoding stream.

* Pad Bits — Variable-length field required to ensure that the non-HT data field
contains an integer number of symbols.

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and

metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1-328

wlanNonHTDataRecover

Use in a MATLAB Function block is not supported.

See Also

wlanNonHTConfig | wlanNonHTData | wlanRecoveryConfig

Introduced in R2015b

1-329

1 Functions — Alphabetical List

1-330

wlanPacketDetect

OFDM packet detection using L-STF

Syntax

startOffset = wlanPacketDetect(rxSig, cbw)

startOffset = wlanPacketDetect(rxSig, cbw,offset)
startOffset = wlanPacketDetect(rxSig,cbw,offset,threshold)

[startOffset,M] = wlanPacketDetect()

Description

startOffset = wlanPacketDetect(rxSig, cbw) returns the offset from the start of
the input waveform to the start of the detected preamble, given a received time-domain
waveform and the channel bandwidth. For more information, see “Packet Detection
Processing” on page 1-337.

Note This function supports packet detection of OFDM modulated signals only.

startOffset = wlanPacketDetect(rxSig, cbw,offset) specifies an offset from
the start of the received waveform and indicates where the autocorrelation processing
begins. The returned start0ffset is relative to the input offset.

startOffset = wlanPacketDetect(rxSig, cbw,offset,threshold) specifies the
threshold which the decision statistic must meet or exceed to detect a packet.

[startOffset,M] = wlanPacketDetect() also returns the decision statistics of

the packet detection algorithm for the received time-domain waveform, using any of the
input arguments in the previous syntaxes.

Examples

wlanPacketDetect

Detect 802.11n Packet
Detect a received 802.11n packet at a signal-to-noise ratio (SNR) of 20 dB.

Create an HT configuration object and TGn channel object. Generate a transmit
waveform.

cfgHT = wlanHTConfig;
tgn = wlanTGnChannel('LargeScaleFadingEffect', 'None');

txWaveform = wlanWaveformGenerator([1;0;0;1],cfgHT);

Pass the waveform through the TGn channel with an SNR of 20 dB. Detect the start of the
packet.

snr = 20;
fadedSig = tgn(txWaveform);
rxWaveform = awgn(fadedSig,snr,0);

startOffset = wlanPacketDetect(rxWaveform,cfgHT.ChannelBandwidth)

startOffset 1

The packet is detected at the first sample of the received waveform, specifically the
returned startOffset indicates an offset of zero samples from the start of the received
waveform.

Detect Delayed 802.11ac Packet

Detect a received 802.11ac packet that has been delayed. Specify an offset of 25 to begin
the autocorrelation process.

Create an VHT configuration object and generate the transmit waveform.
cfgVHT = wlanVHTConfig;

txWaveform = wlanWaveformGenerator([1;0;0;1],cfgVHT, ...
'WindowTransitionTime',0);

Delay the signal by appending zeros at the start. Specify an offset of 25 for the beginning
of autocorrelation processing. Detect the start of the packet.

1-331

1 Functions — Alphabetical List

1-332

rxWaveform = [zeros(100,1);txWaveform];

offset = 25;
startOffset = wlanPacketDetect(rxWaveform,cfgVHT.ChannelBandwidth,offset)
startOffset = 48

Calculate the detected packet offset by adding the returned startOffset and the input
offset.

pktOffset offset + startOffset

pktOffset

73

The offset from the first sample of the received waveform to the start of the packet is
detected to be 73 samples. This coarse approximation of the packet-start offset is useful
for determining where to begin autocorrelation for the first packet and for subsequent
packets when a multipacket waveform is transmitted.

Detect Delayed 802.11a Packet

Detect a received 802.11a packet that has been delayed. No channel impairments are
added. Set the input offset to 5 and use a threshold setting very close to 1.

Create an non-HT configuration object. Generate the transmit waveform.
cfgNonHT = wlanNonHTConfig;

txWaveform = wlanWaveformGenerator([1;0;0;1],cfgNonHT, ...
'WindowTransitionTime',0);

Delay the signal by appending zeros at the start. Set an initial offset of 5 and a threshold
very close to 1. Detect the delayed packet.

rxWaveform = [zeros(20,1);txWaveform];

offset = 5;

threshold = 1-10*eps;

startOffset = wlanPacketDetect(rxWaveform,...
cfgNonHT.ChannelBandwidth,offset, threshold)

startOffset = 15

wlanPacketDetect

Calculate the detected packet offset by adding the returned startOffset and the input
offset.

totalOffset offset + startOffset

totalOffset 20

Using a threshold close to 1 and an undistorted received waveform increases the
accuracy of the packet detect location. The detected offset from the first sample of the
received waveform to the start of the packet is determined to be 20 samples.

Generate WLAN Packet Decision Statistics
Return the decision statistics of a WLAN waveform that consists of five 802.11a packets.

Create a non-HT configuration object and a five-packet waveform. Delay the waveform by
4000 samples.

cfgNonHT = wlanNonHTConfig;
txWaveform = wlanWaveformGenerator([1;0;0;1],cfgNonHT,
"NumPackets',5, 'IdleTime',20e-6);

rxWaveform = [zeros(4000,1);txWaveform];

Setting the threshold input to 1, generates packet decision statistics for the entire
waveform and suppresses the startOffset output. Plot the decision statistics, M.

offset = 0;

threshold = 1;

[startOffset,M] = wlanPacketDetect(rxWaveform,cfgNonHT.ChannelBandwidth, ...
offset,threshold);

plot(M)

1-333

1 Functions — Alphabetical List

1-334

0.9r 7

0.8 7

15
%104

Since threshold = 1, the decision statistics for the entire waveform are included in the
output M. The decision statistics show five peaks. The peaks corresponds to the first
sample of each packet detected. View startOffset.

startOffset
startOffset =
[]

The returned startOffset is empty because threshold was set to 1.

wlanPacketDetect

Input Arguments

rxSig — Received time-domain signal
matrix

Received time-domain signal, specified as an Ng-by-Ny matrix. Ny is the number of receive
antennas. N represents the number of time-domain samples in the received signal.

Data Types: double
Complex Number Support: Yes

cbw — Channel bandwidth
'CBW5' | 'CBW10' | 'CBW20' | 'CBW40' | 'CBW8O' | 'CBW160"

Channel bandwidth in MHz, specified as 'CBW5', 'CBW10', 'CBW20"', 'CBW40",
'CBW80O', or 'CBW160"'.

Data Types: char | string

offset — Number of samples offset
0 (default) | nonnegative integer

Number of samples offset from the beginning of the received waveform, specified as a
nonnegative integer. offset defines the starting sample for the autocorrelation process.
offset is useful for advancing through and detecting the start0ffset sample for
successive packets in multipacket waveforms.

Note Since the packet detection searches forward in time, the first packet will not be
detected if the initial setting for offset is beyond the first “L-STF” on page 1-336.

Data Types: double

threshold — Decision statistic threshold
0.5 (default) | real scalar | from >0 to 1

Decision statistic threshold that must be met or exceeded to detect a packet, specified as
a real scalar greater than 0 and less than or equal to 1.

Data Types: double

1-335

1 Functions — Alphabetical List

1-336

Output Arguments

start0ffset — Number of samples offset to the start of packet
nonnegative integer | []

Number of samples offset to the start of packet, returned as a nonnegative integer. This
value, shifted by of fset, indicates the detected start of a packet from the first sample of
rxSig.

* An empty value, [], is returned if no packet is detected or if threshold is set to 1.

* Zero is returned if there is no delay, specifically the packet is detected at the first
sample of the waveform.

M — Decision statistics
vector

Decision statistics based on autocorrelation of the input waveform, returned as an N-by-1
real vector. The length of N depends on the starting location of the autocorrelation

process and the number of samples until a packet is detected. When threshold is set to
1, M returns the decision statistics of the full waveform and start0ffset returns empty.

For more information, see “Packet Detection Processing” on page 1-337.

Definitions

L-STF

The legacy short training field (L-STF) is the first field of the 802.11 OFDM PLCP legacy
preamble. The L-STF is a component of VHT, HT, and non-HT PPDUs.

wlanPacketDetect

Legacy Preamble

L-5TF

TEH:IH‘T

The L-STF duration varies with channel bandwidth.

Channel Bandwidth
(MHz)

Subcarrier
Frequency
Spacing, A¢ (kHz)

Fast Fourier
Transform (FFT)
Period

(Teer = 1/ A¢)

L-STF Duration
(TSHORT = 10 X TFFT/
4)

20, 40, 80, and 160 |312.5 3.2 us 8 us
10 156.25 6.4 s 16 us
5 78.125 12.8 us 32 us

Because the sequence has good correlation properties, it is used for start-of-packet
detection, for coarse frequency correction, and for setting the AGC. The sequence uses 12
of the 52 subcarriers that are available per 20 MHz channel bandwidth segment. For 5
MHz, 10 MHz, and 20 MHz bandwidths, the number of channel bandwidths segments is

1.

Algorithms

Packet Detection Processing

The packet detection algorithm is implemented as a double sliding window as described
in OFDM Wireless LANs [1], Chapter 2. The autocorrelation of “L-STF” on page 1-336
short training symbols is used to return an estimated packet-start offset. In a robust

1-337

1 Functions — Alphabetical List

1-338

system, the next stage will refine this estimate with symbol timing detection using the L-
LTE

As shown in the figure, the received signal, r,, is delayed then correlated in two sliding
windows independently. The packet detection processing output provides decision
statistics (m,) of the received waveform.

fn l '@ + C - il |2 Ma

* Window C autocorrelates between the received signal and the delayed version, c,.

Ny D1

#
Cp = Z zrn+k,lrn+k+D,l
I=1K=0

* Window P calculates the energy received in the autocorrelation window, p,.

Np.D-1

bp = 22 |rn+k+D,l |2

1=1k=0

* The decision statistics, m,, normalize the autocorrelation by p, so that the decision
statistic is not dependent on the absolute received power level.

The decision statistics provide visual information resulting from the autocorrelation
process that is useful when selecting the appropriate threshold value for the input

wlanPacketDetect

waveform. The recommended default value of 0.5 for threshold favors false
detections over missed detections considering a range of SNRs and various antenna
configurations.

In the sliding window calculations, D is the period of the “L-STF” on page 1-336 short
training symbols and Ny is the number of receive antennas.

Packet detection processing follows this flow chart:

1-339

1 Functions — Alphabetical List

Check input length and
Offset value

End of input samples, .
no detection Correlate and count
correlation peaks

%

Mo
Mumber of correlation

peaks > 1.3 Lerr_symeoL

Yes |

Relative distance between
15t peak and subsequent

peaks > 3 Lerr_svmecL

b
< Packet detected >

Lgrr symsor is the length of an “L-STF” on page 1-336 symbol.

Yes

Note This function supports packet detection of OFDM modulated signals only.

1-340

wlanPacketDetect

References

[1] Terry, J., and J. Heiskala. OFDM Wireless LANs: A Theoretical and Practical Guide.

Indianapolis, IN: Sams, 2002.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

wlanCoarseCFOEstimate | wlanFieldIndices

Introduced in R2016b

1-341

1 Functions — Alphabetical List

1-342

wlanRecoveryConfig

Create data recovery configuration object

Syntax
cfgRec = wlanRecoveryConfig
cfgRec = wlanRecoveryConfig(Name,Value)

Description

cfgRec = wlanRecoveryConfig creates a configuration object that initializes
parameters for use in recovery of signal and data information.

cfgRec = wlanRecoveryConfig(Name,Value) creates an information recovery
configuration object that overrides the default settings using one or more Name, Value
pair arguments.

At runtime, the calling function validates object settings for properties relevant to the
operation of the function.

Examples

Create wlanRecoveryConfig Object

Create an information recovery configuration object using a Name, Value pairs to update
the equalization method and OFDM symbol sampling offset.

cfgRec = wlanRecoveryConfig('EqualizationMethod"','ZF",
'OFDMSymbo10ffset',0.5)

cfgRec =
wlanRecoveryConfig with properties:

OFDMSymbol0ffset: 0.5000

wlanRecoveryConfig

EqualizationMethod: 'ZF'
PilotPhaseTracking: 'PreEQ’
MaximumLDPCIterationCount: 12
EarlyTermination: 0

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'OFDMSymbolOffset',0.25, '"EqualizationMethod', 'ZF'

OFDMSymbol0ffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbol0ffset =0
represents the start of the cyclic prefix and OFDMSymbo10ffset = 1 represents the end
of the cyclic prefix.

- Cyelic Prefix (CP)

) Dalta
CP
X
OFDMSymbolOffset =X * Rx FFT
Minimum OFDMSymbolOffset =0 Rx FFT
Maximum OFDMSymbolOffset =1 | 1 | Rx FFT

1-343

1 Functions — Alphabetical List

1-344

Data Types: double

EqualizationMethod — Equalization method
'"MMSE ' (default) | ' ZF"'

Equalization method, specified as 'MMSE"' or 'ZF'.

* 'MMSE' indicates that the receiver uses a minimum mean square error equalizer.
* 'ZF' indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'

Data Types: char | string

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

* 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

* 'None' — Pilot phase tracking does not occur.

Data Types: char | string

MaximumLDPCIterationCount — Maximum number of decoding iterations in
LDPC
12 (default) | positive scalar integer

Maximum number of decoding iterations in LDPC, specified as a positive scalar integer.
This parameter is applicable when channel coding is set to LDPC for the user of interest.

For information on channel coding options, see the 802.11 format configuration object of
interest.
Data Types: double

EarlyTermination — Enable early termination of LDPC decoding
false (default) | true

Enable early termination of LDPC decoding, specified as a logical. This parameter is
applicable when channel coding is set to LDPC for the user of interest.

wlanRecoveryConfig

* When set to false, LDPC decoding completes the number of iterations specified by
MaximumLDPCIterationCount, regardless of parity check status.

* When set to true, LDPC decoding terminates when all parity-checks are satisfied.

For information on channel coding options, see the 802.11 format configuration object of
interest.

Output Arguments

cfgRec — Data recovery configuration
wlanRecoveryConfig object

Data recovery configuration, returned as a wlanRecoveryConfig object. The properties
of cfgRec are specified in wlanRecoveryConfig.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

wlanHTDataRecover | wlanHTSIGRecover | wlanLSIGRecover |
wlanNonHTDataRecover | wlanVHTDataRecover | wlanVHTSIGARecover |
wlanVHTSIGBRecover

Introduced in R2015b

1-345

1 Functions — Alphabetical List

1-346

wlanS1GConfig

Create S1G format configuration object

Syntax
cfgS1G = wlanS1GConfig
cfgS1G = wlanS1GConfig(Name,Value)

Description

cfgS1G = wlanS1GConfig creates a configuration object that initializes parameters for
an IEEE 802.11 sub 1 GHz (S1G) format “PPDU” on page 1-356.

cfgS1G = wlanS1GConfig(Name,Value) creates an S1G format configuration object
that overrides the default settings using one or more Name, Value pair arguments.

At runtime, the calling function validates object settings for properties relevant to the
operation of the function.

Examples

Create wlanS1GConfig Object for Single User

Create an S1G configuration object with default settings for a single user. Override the
default by specifying a 4 MHz channel bandwidth and short preamble configuration.

cfgS1G = wlanS1GConfig;
cfgS1G.ChannelBandwidth = 'CBW4';
cfgS1G.Preamble = 'Short';

cfgS1G

cfgS1G =
wlanS1GConfig with properties:

wlanS1GConfig

ChannelBandwidth: 'CBW4'
Preamble: 'Short'
NumUsers: 1
NumTransmitAntennas: 1
NumSpaceTimeStreams: 1
SpatialMapping: 'Direct’
STBC: 0
MCS: 0O
APEPLength: 256
GuardInterval: 'Long
PartialAID: 37
UplinkIndication: 0
Color: O
TravelingPilots: ©
ResponseIndication: 'None
RecommendSmoothing: 1

Read-only properties:
ChannelCoding: 'BCC'
PSDULength: 261

Create wlanS1GConfig Object for Two Users

Create an S1G configuration object that assigns a 2 MHz bandwidth and two users. Use a
combination of Name,Value pairs and in-line initialization to change default settings. In

vector-valued properties, each element applies to a specific user.

cfgMU = wlanS1GConfig('ChannelBandwidth', 'CBW2',
'Preamble', 'Long’',
"NumUsers', 2,
'GroupID',2,
"NumTransmitAntennas', 2);
cfgMU.NumSpaceTimeStreams = [1 1];
cfgMU.MCS = [4 8];
cfgMU.APEPLength = [1024 2048];
cfgMu

cfgMu =
wlanS1GConfig with properties:

ChannelBandwidth: 'CBW2'

1-347

1 Functions — Alphabetical List

1-348

Preamble: 'Long'
NumUsers: 2
UserPositions: [0 1]
NumTransmitAntennas: 2
NumSpaceTimeStreams: [1 1]
SpatialMapping: 'Direct’
MCS: [4 8]
APEPLength: [1024 2048]
GuardInterval: 'Long'
GroupID: 2
TravelingPilots: ©
ResponseIndication: 'None'

Read-only properties:

ChannelCoding: 'BCC'
PSDULength: [1031 2065]

NumUsers is set to 2 and the user-dependent properties are two-element vectors.

Create wlanS1GConfig Object and Return Packet Format

Create an S1G configuration object with default settings for a single user and change the
default property settings by using dot notation. Use the packetFormat object function
to access the S1G packet format of the object.

Create an S1G configuration object with default settings. By default, the configuration
object creates properties to model the short S1G packet format.

cfgS1G = wlanS1GConfig;
packetFormat(cfgS1G)

ans =
'S1G-Short'

Modify the defaults by using the dot notation to specify a long preamble.

cfgS1G.Preamble = 'Long';
packetFormat(cfgS1G)

ans =
'S1G-Long"'

wlanS1GConfig

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: 'ChannelBandwidth', 'CBW4', 'NumUsers', 2 specifies a channel
bandwidth of 4 MHz and two users for the S1G format packet.

ChannelBandwidth — Channel bandwidth
"CBW2"' (default) | 'CBW1"' | "CBW4' | "CBW8' | 'CBW16"

Channel bandwidth, specified as 'CBW1', 'CBW2', 'CBW4"', 'CBW8', or 'CBW16"'. If the
transmission has multiple users, the same channel bandwidth is applied to all users.

Example: 'CBW16' sets the channel bandwidth to 16 MHz.
Data Types: char | string

Preamble — Preamble type
'Short' (default) | 'Long’

Preamble type, specified as 'Short' or 'Long'. This property applies only when
ChannelBandwidth is not 'CBW1'.

Data Types: char | string

NumUsers — Number of users
1 (default) |23 |4

Number of users, specified as 1, 2, 3, or 4. (Nygers)

Data Types: double

UserPositions — Position of users
[0 1] (default) | row vector of integers from 0 to 3 in strictly increasing order

Position of users, specified as an integer row vector with length equal to NumUsers and
element values from 0 to 3 in a strictly increasing order. This property applies when
NumUsers > 1.

1-349

1 Functions — Alphabetical List

1-350

Example: [0 2 3] indicates positions for three users, where the first user occupies
position 0, the second user occupies position 2, and the third user occupies position 3.

Data Types: double

NumTransmitAntennas — Number of transmit antennas

1 (default) | integer from 1 to 4

Number of transmit antennas, specified as a scalar integer from 1 to 4.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 4 | 1-by-Nysers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector. (Ng)

» For a single user, the number of space-time streams is an integer scalar from 1 to 4.

» For multiple users, the number of space-time streams is a 1-by-Ny..s vector of integers
from 1 to 4, where Ny < 4. The sum total of space-time streams for all users,
N5 Tota, must not exceed four.

Example: [1 1 2] indicates number of space-time streams for three users, where the
first user gets 1 space-time stream, the second user gets 1 space-time stream, and the
third user gets 2 space-time streams. The total number of space-time streams assigned is
4,

Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct’' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
"Custom'. The default value of 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

Data Types: char | string

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
apply a beamforming steering matrix, and to rotate and scale the constellation mapper
output vector. If applicable, scale the space-time block coder output instead.

wlanS1GConfig

SpatialMappingMatrix applies when the SpatialMapping property is set to
'Custom'. For more information, see IEEE Std 802.11-2012, Section 20.3.11.11.2.

* When specified as a scalar, a constant value applies to all the subcarriers.

* When specified as a matrix, the size must be Ngrg 1ota-by-Nr. The spatial mapping
matrix applies to all the subcarriers. Ngrs 1ot iS the sum of space-time streams for all
users, and Ny is the number of transmit antennas.

* When specified as a 3-D array, the size must be Ngr-by-Ng1g 1o1a-by-Nr. Ngr is the sum
of the occupied data (Ngp) and pilot (Ngp) subcarriers, as determined by
ChannelBandwidth. Ngrg 1o iS the sum of space-time streams for all users. Ny is the
number of transmit antennas.

Ngp increases with channel bandwidth.

ChannelBandwidt |Number of Number of Data |Number of Pilot

h Occupied Subcarriers (Nsp) |Subcarriers (Ngp)
Subcarriers (Ng7)

'CBW1' 26 24 2

'CBW2' 56 52 4

'CBW4' 114 108 6

'CBWS8' 242 234 8

'CBW16" 484 468 16

The calling function normalizes the spatial mapping matrix for each subcarrier.

Example: [0.5 0.3 0.4; 0.4 0.5 0.8] represents a spatial mapping matrix having two space-
time streams and three transmit antennas.

Data Types: double
Complex Number Support: Yes

Beamforming — Enable beamforming in a long preamble packet
true (default) | false

Enable beamforming in a long preamble packet, specified as a logical. Beamforming is
performed when this setting is true. This property applies for a long preamble
(Preamble = 'Long') with NumUsers = 1 and SpatialMapping = 'Custom'. The
SpatialMappingMatrix property specifies the beamforming steering matrix.

Data Types: logical

1-351

1 Functions — Alphabetical List

1-352

STBC — Enable space-time block coding
false (default) | true

Enable space-time block coding (STBC) of the PPDU data field, specified as a logical.
STBC transmits multiple copies of the data stream across assigned antennas.

* When set to false, no STBC is applied to the data field, and the number of space-time
streams is equal to the number of spatial streams.

* When set to true, STBC is applied to the data field, and the number of space-time
streams is double the number of spatial streams.

See IEEE 802.11ac-2013, Section 22.3.10.9.4 for further description.

Note STBC is relevant for single-user transmissions only.

Data Types: Llogical

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 10 | 1-by-Nysers Vector of integers

Modulation and coding scheme used in transmitting the current packet, specified as a
scalar or vector.
» For a single user, the MCS value is a scalar integer from 0 to 10.

* For multiple users, MCS is a 1-by-Ny,.s vector of integers or a scalar with values from
0 to 10, where Nygers < 4.

MCS Modulation Coding Rate Comment
0 BPSK 1/2
1 QPSK 1/2
2 QPSK 3/4
3 16QAM 1/2
4 16Q0AM 3/4
5 64QAM 2/3
6 64QAM 3/4
7 64QAM 5/6

wlanS1GConfig

MCS Modulation Coding Rate Comment

8 2560Q0AM 3/4

9 256QAM 5/6

10 BPSK 1/2 Applies only for
ChannelBandwidth
= '"CBW1'

Data Types: double

APEPLength — Number of bytes in the A-MPDU pre-EOF padding
256 (default) | nonnegative integer | vector of nonnegative integers

Number of bytes in the A-MPDU pre-EOF padding, specified as an integer scalar or
vector.
« For a single user, APEPLength is a nonnegative integer in the range [0, 216 - 1].

* For multi-user, APEPLength is a 1-by-Ny,.s vector of nonnegative integers, where
Nuysers is an integer in the range [1, 4]. The entries in APEPLength are integers in the
range [0, 216 - 1].

* For a null data packet (NDP), APEPLength = 0.

APEPLength is used internally to determine the number of OFDM symbols in the data
field.

Note Only aggregated data transmission is supported.

Data Types: double

GuardInterval — Cyclic prefix length for the data field within a packet
"Long' (default) | 'Short"

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

* The long guard interval length is 800 ns.
* The short guard interval length is 400 ns.

Note For S1G, the first OFDM symbol within the data field always has a long guard
interval, even when GuardIntervalis setto 'Short'.

1-353

1 Functions — Alphabetical List

1-354

Data Types: char | string

GroupID — Group identification number
1 (default) | integer from 1 to 62

Group identification number, specified as an integer scalar from 1 to 62. The group
identification number is signaled during a multi-user transmission. Therefore this
property applies for a long preamble (Preamble = 'Long') and when NumUsers is
greater than 1.

Data Types: double

PartialAID — Abbreviated indication of the PSDU recipient
37 (default) | integer from 0 to 511

Abbreviated indication of the PSDU recipient, specified as an integer scalar from 0 to
511.

» For an uplink transmission, the partial identification number is the last nine bits of the
basic service set identifier (BSSID) and must be an integer from 0 to 511.

» For a downlink transmission, the partial identification of a client is an identifier that
combines the association ID with the BSSID of its serving AP and must be an integer
from 0 to 63.

For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

UplinkIndication — Enable uplink indication
false (default) | true

Enable uplink indication, specified as a logical. Set UplinkIndication to true for
uplink transmission or false for downlink transmission. This property applies when
ChannelBandwidth is not 'CBW1' and NumUsers = 1.

Data Types: logical

Color — Access point color identifier
0 (default) | integer scalar from 0 to 7

Access point (AP) color identifier, specified as an integer from 0 to 7. An AP includes a
Color number for the basic service set (BSS). An S1G station (STA) can use the Color
setting to determine if the transmission is within a BSS it is associated with. An S1G STA

wlanS1GConfig

can terminate the reception process for transmissions received from a BSS that it is not
associated with. This property applies when ChannelBandwidth is not 'CBW1',
NumUsers =1, and UplinkIndication = false.

Data Types: double

TravelingPilots — Enable traveling pilots
false (default) | true

Enable traveling pilots, specified as a logical. Set TravelingPilots to true for
nonconstant pilot locations. Traveling pilots allow a receiver to track a changing channel
due to Doppler spread.

Data Types: logical

ResponselIndication — Response indication type
"None' (default) | '"NDP' | "Normal"' | 'Long’

Response indication type, specified as 'None', 'NDP', '"Normal', or 'Long'. This
information is used to indicate the presence and type of frame that will be sent a short
interframe space (SIFS) after the current frame transmission. The response indication
field is set based on the value of ResponseIndication and transmitted in;

* The SIG2 field of the S1G_SHORT preamble

* The SIG-A-2 field of the S1G_ LONG preamble

» The SIG field of the S1G_1M preamble

Data Types: char | string

RecommendSmoothing — Recommend smoothing for channel estimation
true (default) | false

Recommend smoothing for channel estimation, specified as a logical.

+ If the frequency profile is nonvarying across the channel , the receiver sets this
property to true. In this case, frequency-domain smoothing is recommended as part
of channel estimation.

+ If the frequency profile varies across the channel, the receiver sets this property to
false. In this case, frequency-domain smoothing is not recommended as part of
channel estimation.

Data Types: Llogical

1-355

1 Functions — Alphabetical List

1-356

Output Arguments

cfgS1G — S1G PPDU configuration
wlanS1GConfig object

S1G “PPDU” on page 1-356 configuration, returned as a wlanS1GConfig object. The
properties of cfgS1G are described in wlanS1GConfig.

Definitions

PPDU

The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

Functions
wlanDMGConfig | wlanHTConfig | wlanNonHTConfig |
wlanS1GConfig.packetFormat | wlanVHTConfig | wlanWaveformGenerator

Apps
Wireless Waveform Generator

wlanS1GConfig

Topics
“Packet Size and Duration Dependencies”

Introduced in R2016b

1-357

1 Functions — Alphabetical List

1-358

packetFormat

Return WLAN packet format

Syntax

format = packetFormat(cfg)

Description

format = packetFormat(cfg) returns the WLAN packet format, based on the
configuration of the object.

Examples

Create wlanS1GConfig Object and Return Packet Format

Create an S1G configuration object with default settings for a single user and change the
default property settings by using dot notation. Use the packetFormat object function
to access the S1G packet format of the object.

Create an S1G configuration object with default settings. By default, the configuration
object creates properties to model the short S1G packet format.

cfgS1G = wlanS1GConfig;
packetFormat (cfgS1G)

ans =
'S1G-Short'

Modify the defaults by using the dot notation to specify a long preamble.

cfgS1G.Preamble = 'Long';
packetFormat (cfgS1G)

packetFormat

ans =
'S1G-Long'

Input Arguments

cfg — Configuration object
wlanS1GConfig object | wlanHESUConfig object | wlanHEMUConfig object

Configuration object, specified as a wlan51GConfig, wlanHESUConfig, or
wlanHEMUConfig object.

Output Arguments

format — WLAN packet format
character vector

S1G packet format, specified as a character vector indicating the WLAN format of the
configuration object.

* ForawlanS1GConfig object the format is returned as 'S1G-1M', 'S1G-Short', or
'S1G-Long".

» For awlanHESUConfig object the format is returned as 'HE-EXT-SU' or 'HE-SU".
* For a wlanHEMUConfig object the format is returned as 'HE-MU"'.

See Also

Functions
wlanHEMUConfig | wlanHESUConfig | wlanS1GConfig

Introduced in R2017b

1-359

1 Functions — Alphabetical List

wlanSampleRate

Return the nominal sample rate

Syntax

fs = wlanSampleRate(cfgFormat)

Description

fs = wlanSampleRate(cfgFormat) returns the nominal sample rate for the specified
format configuration object cfgFormat.

Examples

Sample Rate for VHT format

Get the sample rate for a VHT format configuration in samples per second.

cfgVHT = wlanVHTConfig;
fs = wlanSampleRate(cfgVHT)

fs = 80000000

Input Arguments

cfgFormat — Packet format configuration

wlanHESUConfig object | wlanHEMUConTfig object | wlanDMGConfig object |
wlanS1GConfig object | wlanVHTConfig object | wlanHTConfig object |
wlanNonHTConfig object

Packet format configuration, specified as a wlanHESUConfig, wlanHEMUConfig,
wlanDMGConfig, wlanS1GConfig, wlanVHTConfig, wlanHTConfig, or

1-360

wlanSampleRate

wlanNonHTConfig object. The type of cfgFormat object determines the nominal sample
rate. For a description of the properties and valid settings for the various packet format
configuration objects, see:

+ wlanHESUConfig Properties

* wlanHEMUConfig Properties

* wlanDMGConfig Properties

* wlanS1GConfig Properties

* wlanVHTConfig Properties

* wlanHTConfig Properties

* wlanNonHTConfig Properties

Output Arguments

fs — Sample rate
scalar

Sample rate in samples per second, returned as an scalar.

See Also

Functions
wlanDMGConfig | wlanHEMUConfig | wlanHESUConfig | wlanHTConfig |
wlanNonHTConfig | wlanS1GConfig | wlanVHTConfig

Introduced in R2017b

1-361

1 Functions — Alphabetical List

1-362

wlanScramble

Scramble and descramble binary input sequence

Syntax

y = wlanScramble(bits,scramInit)

Description

y = wlanScramble(bits,scramInit) scrambles or descrambles the binary input
bits for the specified initial scramble state, using a 127-length frame-synchronous
scrambler. The frame-synchronous scrambler uses the generator polynomial defined in
IEEE 802.11-2012, Section 18.3.5.5 and IEEE 802.11ad-2012, Section 21.3.9. The same
scrambler is used to scramble bits at the transmitter and descramble bits at the receiver.

Examples

Scramble and Descramble bits

Create the scrambler initialization and the input sequence of random bits.

scramInit = 93;
bits = randi([0,1],1000,1);

Scramble and descramble the bits by using the scrambler initialization.

scrambledData = wlanScramble(bits,scramInit);
descrambledData = wlanScramble(scrambledData,scramInit);

Verify that the descrambled data matches the original data.

isequal(bits,descrambledData)

wlanScramble

ans = logical
1

Input Arguments

bits — Input sequence
column vector | matrix

Input sequence to be scrambled, specified as a binary column vector or matrix.

Data Types: double | int8

scramInit — Initial state of scrambler
integer from 1 to 127 | 7-by-1 binary column vector

Initial state of the scrambler, specified as an integer from 1 to 127, or a corresponding 7-
by-1 column vector of binary bits.

The scrambler initialization used on the transmission data follows the process described
in IEEE Std 802.11-2012, Section 18.3.5.5 and IEEE Std 802.11ad-2012, Section 21.3.9.
The header and data fields that follow the scrambler initialization field (including data
padding bits) are scrambled by XORing each bit with a length-127 periodic sequence
generated by the polynomial S(x) = x’+x*+1. The octets of the PSDU (Physical Layer
Service Data Unit) are placed into a bit stream, and within each octet, bit 0 (LSB) is first
and bit 7 (MSB) is last. The generation of the sequence and the XOR operation are shown
in this figure:

1-363

1 Functions — Alphabetical List

Data In

x7hxﬁhx5lx4hx3hx2hx1 -|-)

Scrambled Data Out

Conversion from integer to bits uses left-MSB orientation. For the initialization of the
scrambler with decimal 1, the bits are mapped to the elements shown.

Element (X7)G X5 x4 X3 X2)&

Bit Value |0 0 0 0 0 0 1

To generate the bit stream equivalent to a decimal, use de2bi. For example, for decimal
1

de2bi(1,7,'left-msb")
ans =

0 0 0 0 0 0 1

Same scramInit is applied across all the columns of bits when the input is a matrix.
Example: [0 0 6 0 0 @ 1]
Data Types: double

1-364

wlanScramble

Output Arguments

y — Scrambled or descrambled output
column vector | matrix

Scrambled or descrambled output, returned as a binary column vector or matrix with the
same size and type as bits.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

comm.Descrambler | comm.Scrambler | wlanWaveformGenerator

Introduced in R2017b

1-365

1 Functions — Alphabetical List

1-366

wlanSegmentDeparseBits

Segment-deparse data bits

Syntax

y = wlanSegmentDeparseBits(bits, cbw,numES, numCBPS, numBPSCS)

Description

y = wlanSegmentDeparseBits(bits, cbw, numES, numCBPS, numBPSCS) performs
the inverse operation of the segment parsing defined in IEEE 802.11ac-2013 Section
22.3.10.7 when cbwis 'CBW16' or 'CBW160".

Note Segment deparsing of the bits applies only when the channel bandwidth is either
16 MHz or 160 MHz, and is bypassed for the remaining channel bandwidths (as stated in
the aforementioned section of IEEE802.11ac-2013). Therefore, when cbw is any accepted
value other than 'CBW16' or 'CBW160', wlanSegmentParseBits returns the input
unchanged.

Examples

Segment-Deparse Coded Bits in Two OFDM Symbols

Segment-deparse the coded bits for a VHT configuration (with a channel bandwidth of
160 MHz and three spatial streams) into two OFDM symbols.

Define the input parameters. Set the channel bandwidth to 160 MHz, the number of
coded bits per OFDM symbol to 2808, the number of spatial streams to 3, the number of
encoded streams to 1, the number of coded bits per subcarrier per spatial stream to 2,
and the number of OFDM symbols to 2. Calculate the number of coded bits per OFDM
symbol per spatial stream by dividing the number of coded bits per OFDM symbol by the
number of spatial streams.

wlanSegmentDeparseBits

chanBW = 'CBW160"';
numCBPS = 2808;

numSS = 3;

numesS = 1;

numBPSCS = 2;

numSym = 2;

numCBPSS = numCBPS/numSS;

Create the input sequence of bits.
bits = randi([0 1],numCBPSS*numSym, numSS);
Perform segment parsing on the bits.

parsedBits = wlanSegmentParseBits(bits,chanBW, numES, numCBPS, numBPSCS);
size(parsedBits)

ans = 1x3

936 3 2

Perform segment deparsing on the parsed bits.

deparsedBits = wlanSegmentDeparseBits(parsedBits, chanBW, numES, numCBPS, numBPSCS) ;
size(deparsedBits)

ans = 1x2

1872 3

Verify that the deparsed data matches the original data.
isequal(bits,deparsedBits)

ans = logical
1

1-367

1 Functions — Alphabetical List

Input Arguments

bits — Input sequence
matrix | 3-D array

Input sequence of deinterleaved bits, specified as an (N¢gpssi X Ngym)-by-Ngg-by-Nggg array,
where:

* Ncppsg is the number of coded bits per OFDM symbol per spatial stream per
interleaver block.

* Ngym is the number of OFDM symbols.
* Ngg is the number of spatial streams.

* Nggg is the number of segments. When cbw is ' CBW16' or 'CBW160 ', Ngzg must be 2.
Otherwise it must be 1.

Data Types: double | int8
cbw — Channel bandwidth

'CBW1' | 'CBW2' | 'CBW4' | 'CBW8' | 'CBW16 | 'CBW20' | 'CBW40' | 'CBWSO" |
'CBW160"

Channel bandwidth in MHz, specified as 'CBW1','CBW2', 'CBW4','CBW8', 'CBW16"',
'"CBW20', 'CBW40"', 'CBW80O', or 'CBW160".

Example: 'CBW160'
Data Types: char | string

numES — Number of encoded streams
1to9|12

Number of encoded streams, specified as an integer from 1 to 9, or 12.

Data Types: double

numCBPS — Number of coded bits per OFDM symbol
positive integer

Number of coded bits per OFDM symbol, specified as a positive integer. When cbw is
'CBW16' or 'CBW160', numCBPS must be an integer equal to 468 X NgpgcsXNgg, Where:

* Ngpscs is the number of coded bits per subcarrier per spatial stream.

1-368

wlanSegmentDeparseBits

* Ngg is the number of spatial streams. It accounts for the number of columns (second
dimension) of the input bits.

Data Types: double

numBPSCS — Number of coded bits per subcarrier per spatial stream
112]4|6]8

Number of coded bits per subcarrier per spatial stream, specified as log2(M), where M is
the modulation order. Therefore, numBPSCS must equal:

* 1 for a BPSK modulation

» 2 for a QPSK modulation

* 4 for a 16QAM modulation
* 6 for a 64QAM modulation
e 8 fora256QAM modulation

Data Types: double

Output Arguments

y — Merged segments of data
matrix

Merged segments of data, specified as an (N¢gpss X Nsym)-by-Ngg matrix, where:

* Ncppss is the number of coded bits per OFDM symbol per spatial stream.
* Ngym is the number of OFDM symbols.
* Ngg is the number of spatial streams.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1-369

1 Functions — Alphabetical List

1-370

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

wlanSegmentParseBits

Introduced in R2017b

wlanSegmentDeparseSymbols

wlanSegmentDeparseSymbols

Segment-deparse data subcarriers

Syntax

y = wlanSegmentDeparseSymbols (sym, cbw)

Description

y = wlanSegmentDeparseSymbols(sym, cbw) performs segment deparsing on the
input sym as per [EEE 802.11ac-2013, Section 22.3.10.9.3, when cbw is 'CBW16' or
'CBW160'.

Note Segment deparsing of the data subcarriers applies only when the channel
bandwidth is either 16 MHz or 160 MHz, and is bypassed for the remaining channel
bandwidths (as stated in the aforementioned section of IEEE802.11ac-2013). Therefore,
when cbw is any accepted value other than 'CBW16"' or 'CBW160',
wlanSegmentDeparseSymbols returns the input unchanged.

Examples

Segment-Deparse Symbols

Segment-deparse the symbols in four OFDM symbols for a VHT configuration with a
channel bandwidth of 16 MHz and 3 spatial streams.

Define the input parameters. Since the channel bandwidth is 16 MHz, set the number of
data subcarriers to 468 and the number of frequency segments to two.

chanBW = 'CBW16';

numSD = 468;
numSym = 4;

1-371

1 Functions — Alphabetical List

1-372

numSS = 3;
numSeg = 2;

Create the input sequence of symbols.
data = randi([0 1],numSD/numSeg, numSym, numSS, numSeqg) ;

Segment-deparse the symbols into data subcarriers. The first dimension of the parsed
output accounts for the total number of data subcarriers.

deparsedData = wlanSegmentDeparseSymbols(data,chanBW);
size(deparsedData)

ans = 1x3

468 4 3

Get Symbol Order for a VHT Configuration

Get the symbol order after stream deparsing a sequence for a VHT configuration with a
channel bandwidth of 160 MHz and one spatial stream.

Define the input parameters. Since the channel bandwidth is 160 MHz, set the number of
data subcarriers to 468 and the number of frequency segments to two.

chanBW = 'CBW160"';

numSD = 468;
numSym = 1;
numSS = 1;

numSeg = 2;

Create the input sequence of symbols.

sequence = (l:numSD*numSym*numSS).";
inp = reshape(sequence, numSD/numSeg, numSym, numSS, numSeg);

Segment-deparse the symbols. The output is a column vector with the sequence order of
the symbols.

deparsedData = wlanSegmentDeparseSymbols(inp, chanBW);
deparsedData(1:10)

wlanSegmentDeparseSymbols

ans = 10x1

CQLVWoOoONOULEA WN -

=

Input Arguments

sym — Input sequence
4-D array

Input sequence of frequency segments to deparse, specified as an (Ngp/Nggg)-by-Nsymby-
Ngg-by-Ngg array, where:

Ngp is the number of data subcarriers.

Nggg is the number of segments. When cbw is 'CBW16' or 'CBW160"', Nggg is 2.
Otherwise it is 1.

Ngyy is the number of OFDM symbols.
Ngg is the number of spatial streams.

Data Types: double
Complex Number Support: Yes

cbw — Channel bandwidth
"CBW1' | 'CBW2' | 'CBW4' | 'CBW8' | 'CBW16 | 'CBW20"' | 'CBW40"' | 'CBW8O' |
'CBW160"

Channel bandwidth in MHz, specified as 'CBW1','CBW2', 'CBW4','CBW8', 'CBW16"',
"CBW20', 'CBW40"', 'CBW80O', or 'CBW160".

Example: 'CBW160'

1-373

1 Functions — Alphabetical List

1-374

Data Types: char | string

Output Arguments

y — Deparsed frequency segments
3-D array

Deparsed frequency segments, specified as an Ngp-by-Ngym-by-Ngs array, where:

* Ngp is the number of data subcarriers.
* Ngym is the number of OFDM symbols.
* Nggis the number of spatial streams.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

wlanSegmentParseSymbols

Introduced in R2017b

wlanSegmentParseBits

wlanSegmentParseBits

Segment-parse data bits

Syntax

y = wlanSegmentParseBits(bits, cbw,numES, numCBPS, numBPSCS)

Description

y = wlanSegmentParseBits(bits, cbw, numES, numCBPS, numBPSCS) performs
segment parsing on the input bits as per IEEE 802.11ac-2013, Section 22.3.10.7, when
cbwis 'CBW16' or 'CBW160'.

Note Segment parsing of the bits applies only when the channel bandwidth is either 16
MHz or 160 MHz, and is bypassed for the remaining channel bandwidths (as stated in the
aforementioned section of IEEE802.11ac-2013). Therefore, when cbw is any accepted
value other than 'CBW16' or 'CBW160', wlanSegmentParseBits returns the input
unchanged.

Examples

Segment-Parse Bits in Two OFDM Symbols

Segment-parse coded bits for a VHT configuration (with a channel bandwidth of 160 MHz
and three spatial streams) into two OFDM symbols.

Define the input parameters. Set the channel bandwidth to 160 MHz, the number of
coded bits per OFDM symbol to 2808, the number of spatial streams to 3, the number of
encoded streams to 1, the number of coded bits per subcarrier per spatial stream to 2,
and the number of OFDM symbols to 2. Calculate the number of coded bits per OFDM
symbol per spatial stream by dividing the number of coded bits per OFDM symbol by the
number of spatial streams.

1-375

1 Functions — Alphabetical List

chanBW = 'CBW160";
numCBPS = 2808;

numSS = 3;

numgS = 1;

numBPSCS = 2;

numSym = 2;

numCBPSS = numCBPS/numSS;

Create the input sequence of bits.

bits = randi([0 1],numCBPSS*numSym,numSS, 'int8');

Perform segment parsing on the bits.

parsedBits = wlanSegmentParseBits(bits, chanBW, numES, numCBPS, numBPSCS);
The parsed sequence is a three-dimensional array of bits.

size(parsedBits)

ans = 1x3

936 3 2

parsedBits(1:5,:,:)

ans = 5x3x2 int8 array

ans(:,:,1) =
1 0 1
0 1 1
1 0 1
0 0 0
1 0 1
ans(:,:,2) =
1 1 1
1 1 1
0 0 1
1 1 0
1 0 0

1-376

wlanSegmentParseBits

Get Bit Order of OFDM Symbol

Get the bit order after the segment parsing of an OFDM symbol of an S1G configuration
with a channel bandwidth of 16 MHz, and two spatial streams.

Define the input parameters. Set the channel bandwidth to 16 MHz, the number of coded
bits per OFDM symbol to 1872, the number of spatial streams to 2, the number of
encoded streams to 1, the number of coded bits per subcarrier per spatial stream to 2 and
the number of OFDM symbols to 2. Calculate the number of coded bits per OFDM symbol
per spatial stream by dividing the number of coded bits per OFDM symbol by the number
of spatial streams.

chanBW = 'CBW16"';

numCBPS = 1872;

numSS = 2;

numgES = 1;

numBPSCS = 2;

numSym = 1;

numCBPSS = numCBPS/numSS;

Create the input sequence.

sequence = (1l:numCBPS*numSym).";
inp = reshape(sequence, numCBPSS*numSym, numSS) ;

Perform segment parsing on the sequence.
parsedSequence = wlanSegmentParseBits(inp, chanBW, numES, numCBPS, numBPSCS) ;

The parsed sequence is a three-dimensional array containing the corresponding bit order.
size(parsedSequence)
ans = 1x3

468 2 2

1-377

1 Functions — Alphabetical List

1-378

Input Arguments

bits — Input sequence
matrix

Input sequence of stream-parsed bits, specified as an (N¢gpss X Nsym)-by-Ngs matrix,
where:

* Ncppss is the number of coded bits per OFDM symbol per spatial stream.
* Ngym is the number of OFDM symbols.
* Nggis the number of spatial streams.

Data Types: double | int8

cbw — Channel bandwidth
'CBW1' | 'CBW2' | 'CBW4' | 'CBW8' | 'CBW16 | 'CBW20' | 'CBW40' | 'CBWSO" |
'CBW160"

Channel bandwidth in MHz, specified as 'CBW1','CBW2"', 'CBW4','CBW8"', 'CBW16",
"CBW20', 'CBW40', 'CBW80O', or 'CBW160".

Example: 'CBW160"
Data Types: char | string

numES — Number of encoded streams
1to9|12

Number of encoded streams, specified as an integer from 1 to 9, or 12.

Data Types: double

numCBPS — Number of coded bits per OFDM symbol
positive integer

Number of coded bits per OFDM symbol, specified as a positive integer. When cbw is
'CBW16' or 'CBW160', numCBPS must be an integer equal to 468 X NgpgcsXNgg, Where:

* Nppgcs is the number of coded bits per subcarrier per spatial stream.

* Ngg is the number of spatial streams. It accounts for the number of columns (second
dimension) of the input bits.

Data Types: double

wlanSegmentParseBits

numBPSCS — Number of coded bits per subcarrier per spatial stream
112]4|6]8

Number of coded bits per subcarrier per spatial stream, specified as log2(M), where M is
the modulation order. Therefore, numBPSCS must equal:

* 1 for a BPSK modulation

» 2 for a QPSK modulation

e 4 for a 16QAM modulation

e 6 for a 64QAM modulation

¢ 8 for a 256QAM modulation

Data Types: double

Output Arguments

y — Segment-parsed bits
matrix | 3-D array

Segment-parsed bits, specified as an (N¢gpssi X Ngym)-by-Ngs-by-Nggg array, where:

* Ncppsg is the number of coded bits per OFDM symbol per spatial stream per
interleaver block.

* Ngym is the number of OFDM symbols.
* Nggis the number of spatial streams.

* Nggg is the number of segments. When cbw is 'CBW16' or 'CBW160', Nggg is 2.
Otherwise it is 1.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1-379

1 Functions — Alphabetical List

Use in a MATLAB Function block is not supported.

See Also

wlanSegmentDeparseBits

Introduced in R2017b

1-380

wlanSegmentParseSymbols

wlanSegmentParseSymbols

Segment-parse data subcarriers

Syntax

y = wlanSegmentParseSymbols (sym, cbw)

Description

y = wlanSegmentParseSymbols(sym, cbw) performs the inverse operation of the
segment deparsing on the input sym defined in IEEE 802.11ac-2013, Section 22.3.10.9.3,
when cbw is 'CBW16"' or 'CBW160"'.

Note Segment parsing of the data subcarriers applies only when the channel bandwidth
is either 16 MHz or 160 MHz, and is bypassed for the remaining channel bandwidths (as
stated in the aforementioned section of IEEE802.11ac-2013). Therefore, when cbw is any
accepted value other than 'CBW16' or 'CBW160', wlanSegmentParseSymbols returns
the input unchanged.

Examples

Segment-Parse Symbols

Segment-deparse and segment-parse the symbols in four OFDM symbols for a VHT
configuration with a channel bandwidth of 160 MHz and two spatial streams.

Define the input parameters. Since the channel bandwidth is 160 MHz, set the number of
data subcarriers to 468 and the number of frequency segments to two.

chanBW = 'CBW160';

numSD = 468;
numSym = 4;

1-381

1 Functions — Alphabetical List

1-382

numssS = 2;
numSeg = 2;

Create the input sequence of symbols.
data = randi([0@ 1],numSD/numSeg, numSym, numSS, numSeq) ;

Segment-deparse the symbols into data subcarriers. The first dimension of the parsed
output accounts for the total number of data subcarriers.

deparsedData = wlanSegmentDeparseSymbols(data,chanBW);
size(deparsedData)

ans = 1Ix3

468 4 2

Segment-parse the symbols into data subcarriers. The size of the output is equal to the
size of the original sequence.

segments = wlanSegmentParseSymbols(deparsedData, chanBW);
size(segments)

ans = 1x4

234 4 2 2

Input Arguments

sym — Input sequence
3-D array

Input sequence of equalized data to be segmented, specified as an Ngp-by-Ngyy-by-Ngg
array, where:

* Ngpis the number of data subcarriers.
* Ngym is the number of OFDM symbols.
* Ngg is the number of spatial streams.

Data Types: double

wlanSegmentParseSymbols

Complex Number Support: Yes

cbw — Channel bandwidth
'CBW1' | 'CBW2' | 'CBW4' | 'CBWS' | 'CBW16 | 'CBW20' | 'CBW40' | 'CBWSO" |
'CBW160"

Channel bandwidth in MHz, specified as 'CBW1','CBW2', 'CBW4','CBW8', 'CBW16"',
"CBW20', 'CBW40"', 'CBW80O', or 'CBW160".

Example: 'CBW160'
Data Types: char | string

Output Arguments

y — Frequency segments
4-D array

Frequency segments, specified as an (Ngp/Nggg)-by-Ngymby-Nss-by-Ngrg array, where:

* Ngpis the number of data subcarriers.

* Nggg is the number of segments. When cbw is 'CBW16' or 'CBW160', N is 2.
Otherwise it is 1.

* Ngym is the number of OFDM symbols.

* Ngg is the number of spatial streams.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

1-383

1 Functions — Alphabetical List

See Also

wlanSegmentDeparseSymbols

Introduced in R2017b

1-384

wlanStreamDeparse

wlanStreamDeparse

Stream-deparse binary input

Syntax

y = wlanStreamDeparse(bits,numES, numCBPS, numBPSCS)

Description

y = wlanStreamDeparse(bits,numES, numCBPS,numBPSCS) deparses the spatial
streams specified in bits to form encoded streams. This operation is the inverse of the
one defined in IEEE 802.11-2012 Section 20.3.11.8.2 and IEEE 802.11ac-2013 Section

22.3.10.6.

Examples

Stream-Deparse Input Bits
Stream-deparse five OFDM symbols with two spatial streams into one encoded stream.

Define the input parameters. Set the number of coded bits per OFDM symbol to 432, the
number of coded bits per subcarrier per spatial stream to 2, the number of encoded
streams to 1, the number of spatial streams to 2 and the number of OFDM symbols to 5.

numCBPS = 432;

numBPSCS = 2;
numesS = 1;
numsSS = 2;
numSym = 5;

Create a parsed input of hard bits.

parsed

randi([0 1],numCBPS/numSS*numSym, numSS)
parsed = 1080x2

1-385

1 Functions — Alphabetical List

HFRPHOOKRRFROR K
FRORRRERERERO®

Stream-deparse the bits.
deparsed = wlanStreamDeparse(parsed,numES, numCBPS, numBPSCS)

2160x1

deparsed

PR RRRPORHOR

Input Arguments

bits — Input sequence
matrix

Input sequence of stream-parsed data, specified as a (Ncgpss X Ngym)-by-Ngg matrix, where:

* Ncppss is the number of coded bits per OFDM symbol per spatial stream.
* Ngym is the number of OFDM symbols.

1-386

wlanStreamDeparse

* N g is the number of spatial streams.

Data Types: double | int8

numES — Number of encoded streams
integer from 1to 9, 12

Number of encoded streams, specified as a integer from 1 to 9, or 12.

Data Types: double

numCBPS — Number of coded bits per OFDM symbol
positive integer

Number of coded bits per OFDM symbol, specified as an integer equal to
(NBpscsXNssXNsp), where:

* Ngpscs is the number of coded bits per subcarrier per spatial stream. See numBPSCS.
* Ngg is the number of spatial streams.

* Ngp is the number of complex data numbers per frequency segment, specified as 24,
52, 108, 234, or 468.

Data Types: double

numBPSCS — Number of coded bits per subcarrier per spatial stream
112]4]6]8

Number of coded bits per subcarrier per spatial stream, specified as 1, 2, 4, 6, or 8.

Data Types: double

Output Arguments

y — Stream-deparsed output
matrix

Stream-deparsed output data, returned as an (NcgpsX Ngyam)-by-Ngs matrix, where:

* Ncpps is the number of coded bits per OFDM symbol.
* Ngym is the number of OFDM symbols.

1-387

1 Functions — Alphabetical List

1-388

* Nggis the number of encoded streams.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

wlanStreamParse

Introduced in R2017b

wlanStreamParse

wlanStreamParse

Stream-parse binary input

Syntax

y = wlanStreamParse(bits, numSS, numCBPS, numBPSCS)

Description

y = wlanStreamParse(bits,numSS, numCBPS, numBPSCS) parses the encoded bits
into spatial streams, as defined in IEEE 802.11-2012 Section 20.3.11.8.2 and IEEE
802.11ac-2013 Section 22.3.10.6.

Examples

Stream-Parse Input Bits
Stream-parse three OFDM symbols with two encoded streams into five spatial streams.

Define the input parameters. Set the number of coded bits per OFDM symbol to 3240, the
number of coded bits per subcarrier per spatial stream to 6, the number of encoded
streams to 2, the number of spatial streams to 5 and the number of OFDM symbols to 3.

numCBPS = 3240;

numBPSCS = 6;
numksS = 2;
numSS = 5;
numSym = 3;

Create a random sequence of bits.

bits = randi([0 1],numCBPS*numSym/numES, numES, 'int8"');

Stream-parse the random bits.

1-389

1 Functions — Alphabetical List

1-390

parsedData = wlanStreamParse(bits,numSS, numCBPS, numBPSCS);

Verify the size of the parsed bits.

size(parsedData)
ans = 1Ix2
1944 5

Get Bit Order After Stream Parsing

Get the bit order of an OFDM symbol after stream-parsing it from one encoded stream
into three spatial streams.

Define the input parameters. Set the number of coded bits per OFDM symbol to 156, the
number of coded bits per subcarrier per spatial stream to 1, the number of encoded
streams to 1, the number of spatial streams to 3 and the number of OFDM symbols to 1.

numCBPS = 156;
numBPSCS = 1;
numkES = 1;
numSS = 3;
numSym = 1;

Create an input sequence of ordered symbols with the proper dimensions.

sequence = (1l:numCBPS*numSym).";
inp = reshape(sequence, numCBPS*numSym/numES, numES)

inp = 156x1

OCoo~NOOULE WN K

wlanStreamParse

10

Stream-parse the symbols.

parsedData

parsedData

1

4

7
10
13
16
19
22
25
28

Input Arguments

bits — Input sequence

matrix

wlanStreamParse(inp, numSS, numCBPS, numBPSCS)

= 52x3

2

5

8
11
14
17
20
23
26
29

12
15
18
21
24
27
30

Input sequence of encoded bits, specified as a (Ncgps X Ngym/Ngs)-by-Ngg matrix, where:

* Ncpps is the number of coded bits per OFDM symbol.
* Ngym is the number of OFDM symbols.
* Ngg is the number of encoded streams.

Data Types: double | int8

numSS — Number of spatial streams
integer from 1 to 8

Number of spatial streams (Nss), specified as an integer from 1 to 8.

Data Types: double

1-391

1 Functions — Alphabetical List

1-392

numCBPS — Number of coded bits per OFDM symbol
positive integer

Number of coded bits per OFDM symbol, specified as an integer equal to
(NgpscsXNssXNsp), where:

* Nppgcs is the number of coded bits per subcarrier per spatial stream. See numBPSCS.
* Ngg is the number of spatial streams.

* Ngp is the number of complex data numbers per frequency segment, specified as 24,
52, 108, 234, or 468.

Data Types: double

numBPSCS — Number of coded bits per subcarrier per spatial stream
112]4]6]8

Number of coded bits per subcarrier per spatial stream, specified as 1, 2, 4, 6, or 8.

Data Types: double

Output Arguments

y — Stream-parsed output
matrix

Stream-parsed output data, returned as an (Ncgpss X Nsym)-by-Ngs matrix, where:

* Ncppss is the number of coded bits per OFDM symbol per spatial stream.
* Ngyy is the number of OFDM symbols.
* Nggis the number of spatial streams.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

wlanStreamParse

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

wlanStreamDeparse

Introduced in R2017b

1-393

1 Functions — Alphabetical List

1-394

wlanSymbolTimingEstimate

Fine symbol timing estimate using L-LTF

Syntax
startOffset = wlanSymbolTimingEstimate(rxSig, cbw)
startOffset = wlanSymbolTimingEstimate(rxSig, cbw,threshold)

[startOffset,M] = wlanSymbolTimingEstimate()

Description

startOffset = wlanSymbolTimingEstimate(rxSig, cbw) returns the offset from
the start of the input waveform to the estimated start of the “L-STF” on page 1-401 21

startOffset = wlanSymbolTimingEstimate(rxSig, cbw,threshold) specifies
the threshold that the decision metric must meet or exceed to obtain a symbol timing
estimate.

[startOffset,M] = wlanSymbolTimingEstimate() also returns the decision
metric of the symbol timing algorithm for the received time-domain waveform, using any
of the input arguments in the previous syntaxes.

Examples

Detect HT Packet and Estimate Symbol Timing
Detect a received 802.11n™ packet and estimate its symbol timing at 20 dB SNR.

Create an HT format configuration object and TGn channel configuration object.

cfgHT = wlanHTConfig;
tgn = wlanTGnChannel;

21. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

wlanSymbolTimingEstimate

Generate a transmit waveform and add a delay at the start of the waveform.

txWaveform
txWaveform

wlanWaveformGenerator([1;0;0;1],cfgHT);
[zeros(100,1);txWaveform];

Pass the waveform through the TGn channel model and add noise.

SNR = 20; % In decibels
fadedSig = tgn(txWaveform);
rxWaveform = awgn(fadedSig,SNR,0);

Detect the packet. Extract the non-HT fields. Estimate the fine packet offset using the
coarse detection for the first symbol of the waveform and the non-HT preamble field
indices.

startOffset = wlanPacketDetect(rxWaveform,cfgHT.ChannelBandwidth);
ind = wlanFieldIndices(cfgHT);
nonHTFields = rxWaveform(startOffset+(ind.LSTF(1):ind.LSIG(2)),:);

startOffset = wlanSymbolTimingEstimate(nonHTFields,
cfgHT.ChannelBandwidth)

startOffset = 6

Detect HT Packet and Set Threshold When Estimating Symbol Timing

Impair an HT waveform by passing it through a TGn channel configured to model a large
delay spread. Detect the waveform and estimate the symbol timing. Adjust the decision
metric threshold and estimate the symbol timing again.

Create an HT format configuration object and TGn channel configuration object. Specify
the Model-E delay profile, which introduces a large delay spread.

cfgHT = wlanHTConfig;

tgn = wlanTGnChannel;
tgn.DelayProfile = 'Model-E';

Generate a transmit waveform and add a delay at the start of the waveform.

txWaveform
txWaveform

wlanWaveformGenerator([1;0;0;1],cfgHT);
[zeros(100,1);txWaveform];

1-395

1 Functions — Alphabetical List

Pass the waveform through the TGn channel model and add noise.

SNR = 50; % In decibels
fadedSig = tgn(txWaveform);
rxWaveform = awgn(fadedSig,SNR,0Q);

Detect the packet. Extract the non-HT fields. Estimate the fine packet offset using the
coarse detection for the first symbol of the waveform and the non-HT preamble field
indices. Adjust the decision metric threshold and estimate the fine packet offset again.

startOffset = wlanPacketDetect(rxWaveform,cfgHT.ChannelBandwidth);
ind = wlanFieldIndices(cfgHT);
nonHTFields = rxWaveform(startOffset+(ind.LSTF(1):ind.LSIG(2)),:);

startOffset = wlanSymbolTimingEstimate(nonHTFields,
cfgHT.ChannelBandwidth)

startOffset = 5

threshold 0.1

threshold 0.1000

startOffset = wlanSymbolTimingEstimate(nonHTFields,
cfgHT.ChannelBandwidth, threshold)

startOffset = 9

Detecting the correct timing offset is more challenging for a channel model with large
delay spread. For large delay spread channels, you can try lowering the threshold setting
to see if performance improves in an end-to-end simulation.

Estimate Symbol Timing of TGn-Impaired HT Waveform
Detect a received 802.11n™ packet and estimate its symbol timing at 15 dB SNR.

Create an HT format configuration object. Specify two transmit antennas and two space-
time streams.

cfgHT = wlanHTConfig;
nAnt = 2;
cfgHT.NumTransmitAntennas
cfgHT.NumSpaceTimeStreams

nAnt;
nAnt;

1-396

wlanSymbolTimingEstimate

Show the logic behind the MCS selection for BPSK modulation.

if cfgHT.NumSpaceTimeStreams ==

cfgHT.MCS = 0;

elseif cfgHT.NumSpaceTimeStreams == 2
cfgHT.MCS = 8;

elseif cfgHT.NumSpaceTimeStreams == 3
cfgHT.MCS = 16;

elseif cfgHT.NumSpaceTimeStreams == 4

cfgHT.MCS = 24;
end

Generate a transmit waveform and add a delay at the start of the waveform.

txWaveform
txWaveform

wlanWaveformGenerator([1;0;0;1],cfgHT);
[zeros (100, cfgHT.NumTransmitAntennas) ; txWaveform];

Create a TGn channel configuration object for two transmit antennas and two receive
antennas. Specify the Model-B delay profile. Pass the waveform through the TGn channel
model and add noise.

tgn = wlanTGnChannel;
tgn.NumTransmitAntennas = nAnt;
tgn.NumReceiveAntennas = nAnt;
tgn.DelayProfile = 'Model-B';

SNR = 15; % In decibels
fadedSig = tgn(txWaveform);
rxWaveform = awgn(fadedSig,SNR,0);

Detect the packet. Extract the non-HT fields. Estimate the fine packet offset using the
coarse detection for the first symbol of the waveform and the non-HT preamble field
indices.

startOffset = wlanPacketDetect(rxWaveform,cfgHT.ChannelBandwidth);
ind = wlanFieldIndices(cfgHT);
nonHTFields = rxWaveform(startOffset+(ind.LSTF(1):ind.LSIG(2)),:);

startOffset = wlanSymbolTimingEstimate(nonHTFields,
cfgHT.ChannelBandwidth)

startOffset = 8

1-397

1 Functions — Alphabetical List

1-398

Estimate VHT Packet Symbol Timing

Return the symbol timing and decision metric of an 802.11ac™ packet without channel
impairments.

Create a VHT format configuration object. Specify two transmit antennas and two space-
time streams.

cfgVHT = wlanVHTConfig;
cfgVHT.NumTransmitAntennas
cfgVHT.NumSpaceTimeStreams

2
2

Generate a VHT format transmit waveform. Add a 50-sample delay at the start of the
waveform.

txWaveform
txWaveform

wlanWaveformGenerator([1;0;0;1],cfgVHT);
[zeros(50,cfgVHT.NumTransmitAntennas); txWaveform];

Extract the non-HT preamble fields. Obtain the timing offset estimate and decision metric.

ind = wlanFieldIndices(cfgVHT);

nonhtfields = txWaveform(ind.LSTF(1):ind.LSIG(2),:);

[startOffset,M] = wlanSymbolTimingEstimate(nonhtfields,
cfgVHT.ChannelBandwidth) ;

Plot the returned decision metric for the non-HT preamble of the VHT format
transmission waveform.

figure
plot(M)
xlabel('Symbol Timing Index')
ylabel('Decision Metric (M)"')

wlanSymbolTimingEstimate

Decision Metric (M)

%107

L w il
0
0 100 200 300 400 500 600 700 800 900 1000
Symbol Timing Index

Input Arguments

rxSig — Received signal
matrix

Received signal containing an L-LTF, specified as an Ng-by-Ny matrix. Ng is the number of
time-domain samples in the L-LTF and Ny is the number of receive antennas.

Data Types: double

cbw — Channel bandwidth
'CBW5' | 'CBW10' | 'CBW20' | 'CBW40' | 'CBW8O' | 'CBW160"

1-399

1 Functions — Alphabetical List

1-400

Channel bandwidth in MHz, specified as 'CBW5', 'CBW10', 'CBW20"', 'CBW40",
'CBW80O', or 'CBW160"'.

Data Types: char | string

threshold — Decision threshold
1 (default) | real scalar from 0 to 1

Decision threshold, specified as a real scalar from 0 to 1.

You can try out different threshold to maximize the packet reception performance. For
channels with small delay spread with respect to the cyclic prefix length, the default value
is recommended. For a wireless channel with large delay spread with respect to the cyclic
prefix length, such as TGn channel with 'Model E' delay profile, a value of 0.5 is
suggested.

By lowering the threshold setting, you add a non-negative corrector to the symbol timing
estimate as compared to the estimate using the default threshold setting. The range of
the timing corrector is [0, CSD ns/sampling duration]. For more information, see “Cyclic
Shift Delay (CSD)” on page 1-403.

Data Types: double

Output Arguments

startOffset — Offset of L-STF start
integer

Offset of L-STF start, returned as an integer within the range [-L, Ng-2L], where L is the
length of the L-LTF and Ng is the number of samples. Using the input channel bandwidth
(cbw) to determine the range of symbol timing, wlanSymbolTimingEstimate estimates
the offset to the start of L-STF by cross-correlating the received signal with a locally
generated “L-LTF” on page 1-402 of the first antenna.

* startOffset is empty when Ng < L.
* startOffset is negative when the input waveform does not contain a complete “L-
STF” on page 1-401.

M — Cross-correlation
vector

wlanSymbolTimingEstimate

Cross-correlation, returned as an (Ng-L+1)-by-1 vector. M is the cross-correlation between
the received signal and the locally generated “L-LTF” on page 1-402 of the first transmit
antenna.

Definitions

L-STF

The legacy short training field (L-STF) is the first field of the 802.11 OFDM PLCP legacy
preamble. The L-STF is a component of VHT, HT, and non-HT PPDUs.

Legacy Preamble

L-5TF

TenorT

The L-STF duration varies with channel bandwidth.

Channel Bandwidth [Subcarrier Fast Fourier L-STF Duration
(MHz) Frequency Transform (FFT) (Tshort = 10 X Tgpr /
Spacing, Ar (kHz) |Period 4)
(Terr = 1/ A¢)
20, 40, 80, and 160 |312.5 3.2 us 8 us
10 156.25 6.4 ps 16 us
5 78.125 12.8 ps 32 ps

Because the sequence has good correlation properties, it is used for start-of-packet
detection, for coarse frequency correction, and for setting the AGC. The sequence uses 12
of the 52 subcarriers that are available per 20 MHz channel bandwidth segment. For 5

1-401

1 Functions — Alphabetical List

1-402

MHz, 10 MHz, and 20 MHz bandwidths, the number of channel bandwidths segments is
1.

L-LTF

The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP legacy
preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

Legacy Preamble

L-LTF

TLCINS

Channel estimation, fine frequency offset estimation, and fine symbol timing offset
estimation rely on the L-LTF.

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The CP consists of the second half of the long training symbol.

L-LTF
cpP Cc1 c2
Ta Terr Terr

The L-LTF duration varies with channel bandwidth.

wlanSymbolTimingEstimate

Channel Subcarrier Fast Fourier Cyclic Prefix or |L-LTF Duration
Bandwidth Frequency Transform Training (Twong = Tarz +
(MHz) Spacing, A¢ (FFT) Period Symbol Guard |2 X Tger)
(kHz) (Teer = 1/ Af) |Interval (GI2)
Duration
(Teiz = Trer / 2)
20, 40, 80, and |[312.5 3.2 us 1.6 ps 8 us
160
10 156.25 6.4 us 3.2 us 16 ps
5 78.125 12.8 ps 6.4 ps 32 ps

Cyclic Shift Delay (CSD)

A CSD is added to the L-LTF for each transmit antenna, which causes multiple strong
peaks in the correlation function M. The multiple peaks affect the accuracy of fine symbol
timing estimation. For more information, see IEEE 802.11ac, Section 22.3.8.2.1 and Table

22-10.

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[2] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

1-403

1 Functions — Alphabetical List

1-404

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also

comm.PhaseFrequencyOffset | wlanCoarseCFOEstimate | wlanLLTF

Introduced in R2017a

wlanVHTConfig

wlanVHTConfig

Create VHT format configuration object

Syntax
cfgVHT = wlanVHTConfig
cfgVHT = wlanVHTConfig(Name,Value)

Description

cfgVHT = wlanVHTConfig creates a configuration object that initializes parameters for
an IEEE 802.11 very high throughput (VHT) format “PPDU” on page 1-413.

cfgVHT = wlanVHTConfig(Name,Value) creates a VHT format configuration object
that overrides the default settings using one or more Name, Value pair arguments.

At runtime, the calling function validates object settings for properties relevant to the
operation of the function.

Examples

Create wlanVHTConfig Object for Single User

Create a VHT configuration object with the default settings.
cfgVHT = wlanVHTConfig

cfgVHT =
wlanVHTConfig with properties:

ChannelBandwidth: 'CBW80'
NumUsers: 1
NumTransmitAntennas: 1
NumSpaceTimeStreams: 1

SpatialMapping: 'Direct’

1-405

1 Functions — Alphabetical List

STBC: 0
MCS: 0
ChannelCoding: 'BCC'
APEPLength: 1024
GuardInterval: 'Long'
GroupID: 63
PartialAID: 275

Read-only properties:
PSDULength: 1035

Update the channel bandwidth.
cfgVHT.ChannelBandwidth = 'CBW40'

cfgVHT =
wlanVHTConfig with properties:

ChannelBandwidth: 'CBW40'
NumUsers: 1
NumTransmitAntennas: 1
NumSpaceTimeStreams: 1
SpatialMapping: 'Direct’
STBC: 0
MCS: 0
ChannelCoding: 'BCC'
APEPLength: 1024
GuardInterval: 'Long'
GroupID: 63
PartialAID: 275

Read-only properties:
PSDULength: 1030

Create wlanVHTConfig Object for Two Users

Create a VHT configuration object for a 20MHz two-user configuration and one antenna
per user.

1-406

wlanVHTConfig

Create a wlanVHTConfig object using a combination of Name, Value pairs and in-line
initialization to change default settings. Vector-valued properties apply user-specific

settings.

cfgMU = wlanVHTConfig('ChannelBandwidth', 'CBW20', 'NumUsers',?2,
'GroupID',2, 'NumTransmitAntennas',k2);

cfgMU.NumSpaceTimeStreams

cfgMU.MCS = [4 8];

= [1 1];

cfgMU.APEPLength = [1024 2048];
cfgMu.ChannelCoding = {'BCC' 'LDPC'}

'CBW20'
2

cfgMu =
wlanVHTConfig with properties:
ChannelBandwidth:
NumUsers:
UserPositions:

NumTransmitAntennas:
NumSpaceTimeStreams:
SpatialMapping:

MCS:

ChannelCoding:
APEPLength:
GuardInterval:
GroupID:

Read-only properties:
PSDULength:

[0 1]

2

[11]

'‘Direct’

[4 8]

{'BCC' 'LDPC'}
[1024 2048]
'Long’

2

[1030 2065]

The configuration object settings reflect the updates specified. Default values are used for
properties that were not modified.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

1-407

1 Functions — Alphabetical List

1-408

You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: 'ChannelBandwidth', 'CBW160"', 'NumUsers', 2 specifies a channel
bandwidth of 160 MHz and two users for the VHT format packet.

ChannelBandwidth — Channel bandwidth
'CBW80' (default) | 'CBW20"' | 'CBW40"' | 'CBW160'

Channel bandwidth, specified as 'CBW20"', 'CBW40"', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users. The
default value of 'CBW80O' sets the channel bandwidth to 80 MHz.

Data Types: char | string

NumUsers — Number of users
1 (default) |23 |4
Number of users, specified as 1, 2, 3, or 4. (Nysers)

Data Types: double

UserPositions — Position of users
[0 1] (default) | row vector of integers from 0 to 3 in strictly increasing order

Position of users, specified as an integer row vector with length equal to NumUsers and
element values from 0 to 3 in a strictly increasing order. This property applies when
NumUsers > 1.

Example: [0 2 3] indicates positions for three users, where the first user occupies
position 0, the second user occupies position 2, and the third user occupies position 3.

Data Types: double

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer in the range [1, 8]

Number of transmit antennas, specified as an integer in the range [1, 8].

Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 8 | 1-by-Nys.rs vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

wlanVHTConfig

» For a single user, the number of space-time streams is a scalar integer from 1 to 8.

» For multiple users, the number of space-time streams is a 1-by-Ny.s vector of integers
from 1 to 4, where the vector length, Ny, is an integer from 1 to 4.

Example: [1 3 2] is the number of space-time streams for each user.

Note The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

SpatialMapping — Spatial mapping scheme
'‘Direct’ (default) | '"Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct’, 'Hadamard', 'Fourier', or
"Custom’. The default value of 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

Data Types: char | string

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
apply a beamforming steering matrix, and to rotate and scale the constellation mapper
output vector. If applicable, scale the space-time block coder output instead.
SpatialMappingMatrix applies when the SpatialMapping property is set to
"Custom’. For more information, see IEEE Std 802.11-2012, Section 20.3.11.11.2.

* When specified as a scalar, a constant value applies to all the subcarriers.

« When specified as a matrix, the size must be Ngrg 7o1-by-N7. The spatial mapping
matrix applies to all the subcarriers. Ngrg 7ot i the sum of space-time streams for all
users, and Ny is the number of transmit antennas.

* When specified as a 3-D array, the size must be Ngr-by-Ngrg 1ota-by-N7. Ngr is the sum
of the occupied data (Ngp) and pilot (Ngp) subcarriers, as determined by
ChannelBandwidth. Ngrg 1,:q is the sum of space-time streams for all users. Ny is the
number of transmit antennas.

Ngr increases with channel bandwidth.

1-409

1 Functions — Alphabetical List

1-410

ChannelBandwidt |Number of Number of Data |Number of Pilot

h Occupied Subcarriers (Nsp) |Subcarriers (Ngp)
Subcarriers (Ng7)

'CBW20" 56 52 4

'CBW40! 114 108 6

'CBW80O! 242 234 8

'CBW160" 484 468 16

The calling function normalizes the spatial mapping matrix for each subcarrier.

Example: [0.5 0.3 0.4; 0.4 0.5 0.8] represents a spatial mapping matrix having two space-
time streams and three transmit antennas.

Data Types: double
Complex Number Support: Yes

Beamforming — Enable signaling of a transmission with beamforming
true (default) | false

Enable signaling of a transmission with beamforming, specified as a logical. Beamforming
is performed when setting is t rue. This property applies when NumUsers equals 1 and
SpatialMappingis set to 'Custom'. The SpatialMappingMatrix property specifies
the beamforming steering matrix.

Data Types: logical

STBC — Enable space-time block coding
false (default) | true

Enable space-time block coding (STBC) of the PPDU data field, specified as a logical.
STBC transmits multiple copies of the data stream across assigned antennas.

* When set to false, no STBC is applied to the data field, and the number of space-time
streams is equal to the number of spatial streams.

* When set to true, STBC is applied to the data field, and the number of space-time
streams is double the number of spatial streams.

See IEEE 802.11ac-2013, Section 22.3.10.9.4 for further description.

Note STBC is relevant for single-user transmissions only.

wlanVHTConfig

Data Types: logical

MCS — Modulation and coding scheme
0 (default) | integer